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Abstract—Displacement estimation using remote sensing im-
ages is an effective approach for assessing surface displacement
caused by natural disasters like earthquakes and landslides. By
employing pixel correlation algorithms, high-precision displace-
ment maps can be generated from images taken before and
after surface movement. However, traditional methods often rely
on spatial regularization or frequency masking to reduce high-
frequency noise, which can smooth spatial details and result in
biased displacement estimates, especially near sharp discontinu-
ities typical of earthquake surface ruptures. Moreover, sub-pixel
displacement estimation using Synthetic Aperture Radar (SAR)
images remains a challenge compared to optical images, due to
the strong impact of speckle noise.

This paper presents GeoFlowNet-SAR, an innovative sub-
pixel displacement estimation method leveraging SAR images.
SAR offers advantages thanks to an all-weather observation
and high penetration, making it suitable for conditions typically
challenging for optical systems in the visible light spectrum. This
study uses Sentinel-1 SAR Single Look Complex (SLC) images
with dual-polarization (VV and VH modes) and Interferometric
Wide (IW) swath mode to balance coverage and resolution.
By training on simulated displacement datasets with realistic
sharp discontinuities, GeoFlowNet-SAR directly predicts surface
displacement fields, providing highly efficient, robust, and precise
results, while overcoming some limitations of traditional methods.

The effectiveness of the proposed methodological contribu-
tion is first quantitatively demonstrated using synthetic sim-
ulated earthquake datasets, including comparisons with state-
of-the-art correlation methods. The method is further vali-
dated using two real remote sensing images from the 2019
Ridgecrest earthquake and from the 2023 Turkey-Syria earth-
quake. The observed results from these real datasets confirm
the effectiveness of GeoFlowNet-SAR in practical applications.
The codes are available at: https://gricad-gitlab.univ-grenoble-
alpes.fr/giffards/geoflownet-sar.

Index Terms—remote sensing images, displacement estimation,
deep learning, synthetic aperture radar.
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ACCURATE estimation of ground displacement provides
critical information for the study of natural hazards

related to ground motion (e.g., earthquakes, volcanoes, land-
slides, etc.) [1]–[4]. When it comes to earthquakes, accurately
estimating ground displacement, particularly near-field surface
deformation around surface ruptures, provides valuable con-
straints on the exact location of the earthquake source, the
spatial extent of surface damage caused by the earthquake, and
potential impact on nearby infrastructure and populations. At
the same time, these observational data are crucial for various
fields of earthquake science and earthquake engineering.

Recent observational data indicate that the extent of surface
slip localization can vary along a fault surface rupture pro-
duced during an earthquake [5]–[7]. Although some predictive
control parameters have been proposed, the complexity of
real-world scenarios means that the mechanisms behind slip
variations in surface-rupturing earthquakes are not yet fully
understood [8]–[10]. One of the main reasons for this issue is
the limited availability of observational data, which makes it
challenging to conduct a comprehensive analysis and statistical
evaluation of different parameters.

Given this problem, methods relying on image correlation
for obtaining displacement maps have been applied and studied
[11]–[14]. Image correlation is an image processing technique
that estimates the displacement field by calculating the max-
imum of correlation between two remote sensing images ac-
quired at different times over the same location. This technique
is widely used in the study of various surface movements,
such as glacier movements, landslides, volcanic eruptions,
and surface-rupturing earthquakes [15]–[18]. In the context of
earthquakes, the displacements in remote sensing images are
typically small compared to the pixel size, necessitating sub-
pixel level surface displacement estimation. This is particularly
challenging near the surface rupture, where deformation tends
to be more complex and sharp, including discontinuities and
distributed off-fault deformation.

In recent decades, various methods for quantifying ground
deformation from remotely sensed optical images have been
extensively studied, and can be broadly classified into two
categories: spatial domain-based [19]–[22] and frequency
domain-based image correlation techniques [1], [23], [24].
Spatial correlation methods estimate ground displacement by
spatially comparing the correlation of a reference image with
a second image sampled at different positions within a larger
search space (i.e. template matching) [25]. Frequency-based
correlation methods perform a similar operation, albeit in the
frequency domain, which negates the need for a convolutional-
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Fig. 1. The flowchart of GeoFlowNet-SAR for sub-pixel ground displacement estimation using SAR images. A pair of input images (pre- and post-event) are
acquired on two different dates. Image patches are extracted and fed into GeoFlowNet-SAR, where the model performs sub-pixel displacement estimation, in
both range and azimuth directions. The sub-pixel estimation model is trained using synthetic data that includes discontinuities.

type operation, thus making it more efficient [26]. Both meth-
ods calculate the local displacement within a sliding window
to generate the final displacement field across the whole image.
Among them, the Semi-Global Matching (SGM) algorithm
[12] approximates the two-dimensional smoothness constraint
as the average of one-dimensional line optimization problems,
thereby simplifying the computation process. However, this
simplification results in characteristic stripe shading in the final
output [27]. Furthermore, the SGM approach do not typically
achieve high sub-pixel accuracy compared with traditional
block-matching approaches. Frequency domain-based methods
typically utilize the Fast Fourier Transform (FFT) to compute
the upsampled cross-correlation between pre-event and post-
event images, and then locate the peak of the correlation
[13]. However, as the estimation accuracy increases, the com-
putational burden associated with these methods also rises,
particularly in terms of memory requirements.

Meanwhile, although the aforementioned methods have
achieved progress in optical image applications, the varying
illumination conditions during each acquisition of optical
images may affect the content of each pixel, which in turn
impacts the correlation process. Additionally, the vegetation
and anthropogenic changes between the two acquisitions, sep-
arated typically by days to months, makes the estimation pro-
cess more challenging. Lastly, time between optical satellite
acquisitions can become large if cloud coverage prevents the
usage of some revisit dates, thereby increasing the differences
between the two acquisitions (typically weeks to months or
years). In contrast, SAR employs active microwave imaging,
which does not rely on external light sources, allowing it to
operate effectively also under night conditions. Moreover, the
longer wavelength of SAR enables penetration through clouds
(as well as some vegetation), facilitating timely, accurate, and
spatially detailed imaging of the Earth’s surface. However,
SAR imaging faces unique challenges that are not present in
optical imaging. They are inherently complex due to radar geo-
metric effects such as foreshortening, shadowing, and layover,
where taller structures appear disproportionately elongated
due to the oblique angle of the radar signal transmission.

Additionally, the coherence of radar signals leads to speckle
noise, a granular interference that obscures image details and
affects the accuracy of analysis. These factors limit traditional
optical image processing methods from being directly applied
to SAR images. Therefore, it is essential to design and develop
displacement estimation methods tailored specifically to the
characteristics of SAR data.

Specific correlation methods based have been proposed for
SAR images. Li et al. [28] developed a cross-correlation
stacking method to suppress the noise floor of Normalized
Cross-Correlation (NCC), where the peak height and location
in the NCC indicate the matching accuracy and the associated
displacement. By stacking a sequence of pairwise NCCs and
averaging the resulting NCC stack to determine the offset,
the method leverages the redundant information present across
multiple NCCs, providing enhanced robustness against noise.
Pathier et al. [29] combined offsets results from pairs of SAR
images acquired with different geometries of acquisition and
used a weighted average method taking into account knowl-
edge about earthquake surface rupture location to prevent
averaging displacements on both sides of the sharp discon-
tinuity. These methods attempt to mitigate the impact of SAR
image noise from different perspectives. Li et al. [28] leverages
statistical redundancy across multiple NCC calculations to
suppress noise, while the method from [29] aims to reduce
the noise by combining different geometries of acquisition
with constraints to reduce spatial inconsistencies. However,
both methods face challenges in preserving spatial details: the
stacking process may blur fine spatial resolution, and excessive
smoothing can obscure critical displacement features. This is
particularly problematic near sharp discontinuities, such as
those of earthquake surface ruptures, leading to significant
deviations in the estimation of slip localization.

In recent years, with the continuous development of deep
learning, Convolutional Neural Networks (CNNs) have driven
their application in diverse fields such as image classification,
scene understanding, and displacement estimation [30]–[33].
Recent studies have begun exploring deep learning techniques
for sub-pixel displacement estimation [34], [35], with a few
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recent works extending these methods to satellite imagery such
as GeoFlowNet [36], [37]. However, these approaches primar-
ily target optical images, which rely on reflected sun light to
provide direct surface information. In contrast, SAR images
capture the intensity and phase information of radar wave re-
flections from the surface, presenting unique challenges due to
their reliance on intensity and phase information and their sus-
ceptibility to speckle noise caused by coherent scattering. This
fundamental difference severely limits the direct applicability
of optical-based methods to SAR data. Besides, the presence of
speckle noise significantly complicates sub-pixel displacement
estimation, and consequently existing methods developed for
optical imagery are insufficient in mitigating the impact of
noise on the estimation results. To the best of our knowledge,
there is currently no deep learning-based method designed to
address the challenges of sub-pixel displacement estimation
in SAR images. Existing optical-based learning models fail to
generalize due to their reliance on visual features, which are
often distorted or obscured by the noise and scattering effects
typical in SAR images. To further substantiate this limitation,
additional experiments were conducted by applying an optical-
trained model (GeoFlowNet-optical) to SAR imagery. The
results clearly demonstrate that such methods struggle to
maintain accuracy and robustness, highlighting the necessity
of a SAR-oriented design.

Based on the above analysis, the first SAR-specific sub-pixel
displacement estimation network GeoFlowNet-SAR based on
the deep learning model GeoFlowNet [37] has been developed
to address the limitations of prior optical-based approaches.
Compared to previous SAR correlation methods, it directly
learns and utilizes effective abstract features from the data,
reducing the need for manually designed features, simplify-
ing the modeling process, and enhancing the capability to
capture relevant features. Additionally, due to its data-driven
nature, the model effectively mitigates the impact of noise
and other factors (such as atmospheric disturbances) during
the feature learning process, enhancing its robustness. Finally,
by generating synthetic datasets with sharp discontinuities, it
better estimates sub-pixel level sharp changes while preserving
spatial details. The main contributions of this paper are:

1) The creation of a large-scale synthetic dataset based
on SAR images, leveraging the unique observational
characteristics of SAR compared to optical images,
enabling the model to perform sub-pixel level ground
displacement estimation using SAR images.

2) The development of the first data-based sub-pixel SAR
image displacement estimation model GeoFlowNet-
SAR, which effectively utilizes multi-scale features
within the images, achieving pixel-by-pixel displace-
ment estimation while ensuring spatial detail preserva-
tion and robustness across different datasets.

II. RELATED WORK

A. Image correlation methods

Image correlation is a displacement estimation method
based on dense non-rigid image registration principles [38].
Its goal is to estimate the displacement between corresponding

features (represented by pixels) between two image acqui-
sitions. In most remote sensing images, the transformation
between the pre-image and post-image primarily involves
a horizontal two-dimensional local displacement field with
almost no rotation. It is typically assumed that a global
rigid registration has been completed before calculating the
displacement field (i.e. the two images are co-registered).
In this context, image correlation methods can be broadly
categorized into two domains:

1) Spatial correlation methods: Measuring the correlation
between two images I1 and I2 of the same size involves
maximizing a similarity score, which reflects the consistency
of the content between the two images. For global registration,
the cross-correlation function CI1,I2 of images I1 and I2
can be obtained by computing the pixel-wise product for
each possible two-dimensional spatial shift (represented by
the components (∆x,∆y) of the translation vector), and
integrating over the entire image domain.

CI1,I2(∆x,∆y) =
∑
x

∑
y

I1(x+∆x, y+∆y) · I2(x, y) (1)

The estimation of the 2D displacement between two im-
ages can be achieved by finding the pair (∆x,∆y), de-
noted as (∆x∗,∆y∗), that maximizes the correlation score:
(∆x∗,∆y∗) = argmax∆x,∆yCI1,I2(∆x,∆y). In this formu-
lation, (∆x∗,∆y∗) represents a single global shift applied
uniformly to all pixels in the image. However, this approach
assumes a rigid displacement across the entire image, which
does not hold true for scenarios involving varying local shifts.
In such cases, the result may represent an average of the
varying displacements rather than the true dense motion field.
While this formulation is appropriate for global registration,
it does not capture the spatially varying flows required for
dense flow estimation, which is the primary focus of this study.
To capture finer local variations, a local spatial segmentation
method is employed. This approach divides the image into
multiple sliding rectangular windows of a predefined size,
where each window Wk,l corresponds to a subset of pixels
centered at coordinates (k, l). By analyzing smaller regions,
this method enables a more detailed estimation of local
displacements. For each window Wk,l, the cross-correlation
function is computed as follows:

CI1,I2(k, l,∆x,∆y) =
∑
x

∑
y

W 1
k,l(x+∆x, y+∆y)·W 2

k,l(x, y)

(2)
Then (∆x∗

k,l,∆y∗k,l) (which corresponds to the displacement
vector that maximizes the correlation score at position (k, l))
can be calculated from CI1,I2(k, l,∆x,∆y):

(∆x∗
k,l,∆y∗k,l) = argmax∆x,∆yCI1,I2(k, l,∆x,∆y) (3)

2) Frequency correlation methods: An alternative method
involves using the frequency domain. The fundamental princi-
ple is calculating the normalized cross-power spectrum QI1,I2 ,
which is derived by multiplying the Fourier transform F(·) of
one image with the complex conjugate of the Fourier transform
of the other image on an element-wise basis. The inverse
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Fourier transform F−1(·) is applied to this product, resulting
in a normalized cross-correlation matrix RI1,I2(∆x,∆y):

RI1,I2(∆x,∆y) = F−1

{
F(I1)F∗(I2)

|F(I1)F(I2)|

}
(4)

The relative displacement between the two images is sub-
sequently determined by identifying the positions of the peaks
within the correlation matrix [13]. To estimate the displace-
ment field across the entire image, the two images are divided
into multiple windows similarly to spatial correlation methods.

Frequency-based correlation methods help reduce the im-
pact of high-frequency noise and maintain reasonable com-
putational costs, but this often comes at the cost of losing
spatial detail. Using larger correlation windows can achieve an
optimal balance between accuracy, noise control, and spatial
detail. However, in areas with sharp discontinuities or complex
displacements, frequency-based methods may introduce biases
due to the assumption of a homogeneous translation.

B. Deep learning-based methods
Deep learning algorithms, particularly CNNs, have achieved

remarkable success in image processing and computer vision
tasks due to their powerful feature extraction and hierarchical
pattern recognition capabilities. As a core architecture of
deep learning, CNNs leverage a combination of convolutional
layers, pooling layers, normalization layers, activation func-
tions, and fully connected layers to learn complex features
from images and map them to task-specific outputs. Previous
works in computer vision have shown that displacement fields
between two natural images can be efficiently estimated by
deep learning optical flow [39] based on U-Net architectures.
Then Montagnon et al. [36] introduced the first CNN-based
model for sub-pixel ground displacement estimation for optical
satellite imagery. While traditional CNN architectures are
effective, they face challenges in capturing both global and
local contexts simultaneously — an essential aspect for sub-
pixel displacement estimation. To overcome these limitations,
Montagnon et al. [37] derived an optical flow U-Net architec-
ture that they called GeoFlowNet (we will call it GeoFlowNet-
optical in this paper for more clarity), able to estimate a dense
field at a large scale thanks to the first realistic fault dis-
placement database using optical images called FaultDeform.
This approach better preserves spatial details and reduces
computational redundancy.

However, these methods are focused on satellite optical
images, without specifically addressing sub-pixel displacement
estimation using SAR images. Therefore, this paper explores
the use of a U-Net architecture combined with SAR images to
achieve sub-pixel ground displacement estimation. By leverag-
ing the multi-scale feature extraction capability of U-Net and
a specifically designed synthetic database called FaultDeform-
SAR, a novel displacement estimation method GeoFlowNet-
SAR is proposed.

III. METHODOLOGY

A. Overview
The process for sub-pixel ground displacement estimation

using GeoFlowNet-SAR is illustrated in Fig.2. The input

images are two amplitude radar images from different times P1

(the pre-image) and Pw
2 (the warped post-image). Both have

dimensions s × s, where s is the size of the sliding window,
adjustable as needed (typically 256, 512, or 1024).

The model processes and correlates the input data through
a U-net feature pyramid structure to obtain the final pre-
dicted displacement map. During the training and validation
phases, the input data consists of pairs of images and their
corresponding synthetic displacement maps. The generation
of this specific synthetic database FaultDeform-SAR will be
the purpose of the next sub-section. The GeoFlowNet-SAR
network parameters are continuously optimized by computing
a multi-scale loss between the predicted displacement map and
the ground truth displacement values, enabling the model to
achieve satisfactory performance. For the prediction on real
data, the displacement estimations from the different sliding
windows are stitched together to produce the final result.

B. Generation of the training database FaultDeform-SAR
In real-world scenarios, very precise and spatially dense

ground displacement measurements following natural disasters
such as earthquakes are usually unavailable, which creates a
significant challenge for the training of data-based ground dis-
placement estimation. Moreover, there is currently no publicly
available SAR image dataset, real or synthetic, that can be used
for ground displacement estimation.

To effectively train the network parameters, a synthetic
remote sensing database with predefined displacements was
developed for training and validation. Building on a recent
database FaultDeform that proposed realistic synthetic earth-
quake displacement fields warping real optical imagery [37],
our new FaultDeform-SAR dataset applies the same subpixel
displacement fields to real SAR image patches, enabling sub-
pixel displacement estimation. To help clarify the generation
pipeline of the FaultDeform-SAR dataset, the key steps are
summarized below:

Step 1: Select stable SAR image pairs P1 and P2 acquired
over the same location with natural changes but without actual
ground deformation.

Step 2: Apply global image alignment using phase corre-
lation to ensure perfect patch-level spatial correspondence.

Step 3: Generate synthetic, non-uniform displacement fields
& that simulate earthquake deformations with sharp disconti-
nuities.

Step 4: Warp the post-event image P2 using the displace-
ment field & to obtain the warped image Pw

2 .
Step 5: Form the training sample triplet: (P1, Pw

2 , &), as
visualized in Fig. 3.

Specifically, the database consists of Sentinel-1 satellite
images of the SAR Single Look Complex (SLC) product type,
which capture both phase and amplitude. The FaultDeform-
SAR focuses only on amplitude information, which uses the
VV polarization mode and operates in the Interferometric
Wide (IW) swath mode to ensure balanced coverage and
resolution. The images were collected in a side-looking ge-
ometry during a descending orbit, ensuring comprehensive
coverage and consistent illumination. Sentinel-1’s use of the C-
band frequency (approximately 5.405 GHz) allows for strong



5

Fig. 2. The architecture of the GeoFlowNet-SAR model for sub-pixel ground displacement estimation. The model takes pre- and post-amplitude radar images
as input and outputs the estimated displacement map.
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Fig. 3. Generation of a pair of simulated synthetic earthquake images. The
warped post-image incorporates natural reflectance differences due to the time
gap between the pre- and post-image acquisitions, along with the generated
displacement values. The pre-image, warped post-image and displacement
map form a complete pair of sample.

penetration through clouds and light vegetation. The spatial
resolution of the data is defined by a range pixel size of 2.3
meters (range spacing measured along the radar line of sight)
and an azimuth pixel size of 15.6 meters, supporting detailed
surface analysis.

In addition to the differences caused by real displacements,
image offset measurements in real-world scenarios are also
influenced by various reflective noise, such as lighting (for
optical sensors) or topographically correlated amplitude vari-
ations and vegetation changes. Therefore, Synthetic Aperture
Radar (SAR) images covering four distinct locations in the
United States with specific time intervals between acquisitions
are utilized: California (June 25, 2023, to July 7, 2023),
Arizona (August 4, 2023, to August 16, 2023), Colorado
(January 12, 2023, to January 24, 2023), and Oregon (March
2, 2023, to March 14, 2023). These SAR images, which
contain no ground displacement, serve as pre- and post-event
images, allowing us to distinguish between true surface dis-
placement and noise artifacts from environmental factors, thus
enhancing the reliability of displacement measurements under
varying temporal and environmental conditions. Additionally,
phase correlation (implemented in Python using the matrix-
multiplication Discrete Fourier Transform (DFT) method) is
employed to globally align the two acquired images, reducing

potential global mis-registration errors that may remain after
the standard pre-processing steps applied to Sentinel-1 images
by the European Space Agency (ESA). Following the align-
ment of the two images from different times, corresponding
image patches are extracted from identical locations within the
radar amplitude images, ensuring that the two patches (P1 and
P2) represent the same area captured at different times.

Subsequently, a synthetic displacement field & containing
sharp discontinuities was created to warp P2, generating
a warped version Pw

2 , that simulates ground displacement.
To accurately reflect real-world surface displacements, which
often display rough geometries and slip distributions due to
natural fault discontinuities, the synthetic displacement field is
designed to be non-uniform. The displacement field is derived
using analytical expressions that link slip on triangular faults to
surface displacements, and is computed from a set of randomly
generated (and rough) fault geometries and earthquake slip
distributions. Moreover, we specifically design a database with
anisotropic deformation magnitudes in order to account for the
specificity of SAR acquisitions: the size of the pixel is larger
in azimuth than in range. A complete sample in the training
dataset consists of a pair of training images (P1, Pw

2 ) and
the corresponding displacement field &, used as ground truth.
This process can be summarized as:

P2(x, y) = e∆t(P1(x, y)),

Pw
2 = f&(P2(x, y))

(5)

where e∆t represents the natural evolution of the ground over
the time interval ∆t, while f& denotes the warp operation
associated with & (see [37] for more details). To meet the
requirements of model training, this process was repeated
multiple times (including extracting blocks from large-scale
remote sensing images and generating synthetic displacement
fields) to create a sufficient number of samples, and the com-
plete workflow is illustrated in Fig. 3. The resulting dataset
contains 20,000 samples, each with a size of 1024 × 1024
pixels, with 90% used for training and 10% for validation, and
testing conducted on real data as well as additional generated
synthetic data.
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C. Sub-pixel estimation model GeoFlowNet-SAR

The model takes two image patches, P1 and Pw
2 from two

time phases, as input and produces an output of displacement
estimation of the same size as the input. This output consists of
two components, representing the subpixel wise displacement
values in the row and column directions, corresponding to the
azimuth and range directions in the SAR images.

Specifically, the proposed GeoFlowNet-SAR consists of an
encoder and a decoder. The image patches from two different
time phases, taken from the same location, are passed through
an encoder consisting of five convolutional layers. Starting
from the second layer, the spatial dimensions are progressively
reduced while the channel dimensions are increased. A ReLU
activation function follows each convolutional layer. The num-
ber of filters gradually increases from 32 to 512, with a
uniform kernel size of 3×3, which helps to extract fine-grained
features from the small feature maps [40]. Pooling layers
are not used in this process to maximize spatial information.
Instead, dimensionality reduction is achieved through the use
of strided convolutions, which effectively capture multi-scale
features. The decoder part consists of corresponding trans-
posed convolution layers that gradually restore the dimensions
of the feature maps. These are then concatenated with the pre-
vious features, allowing the model to better integrate the scale
features captured during the encoding phase, thus effectively
handling ground displacement across different scales in large-
scale scenarios. The design of the model aims to enhance
displacement estimation accuracy across various scales by
utilizing windows of different sizes. The specific structure and
parameters are detailed in Fig.2. After obtaining displacement
predictions across different scales, the difference between the
predicted and ground truth displacement values are quantified
to compute the loss function. To ensure balanced learning
across all scales, a multi-scale loss function is employed to
guide the training process [40]. Specifically, the loss function
comprises the Mean Absolute Error (MAE) between the
predicted displacements and the ground-truth displacements
at each scale. These scale-specific losses are then weighted
and summed to reflect the importance of features at different
scales. This approach enables the network to learn global
displacement patterns at coarse scales while also capturing
detailed variations at finer scales. This multiscale approach
benefits backpropagation by distributing the gradients across
scales, reducing the risk of vanishing or exploding gradi-
ents associated with single-scale optimization. Eventually, the
model generates precise displacement estimations for displace-
ment fields across different scales, providing more accurate
decision-making support for subsequent tasks.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Implementation details

Experiments are conducted within a Linux operating system
using the PyTorch framework. All experiments are performed
on an NVIDIA Tesla V100 NVLink GPU. Adam optimization
algorithm (Adaptive Moment Estimation) is employed, and
multiscale MAE is used as the loss function. The initial
learning rate is set to 0.001, and a cosine annealing schedule

is used to adjust the learning rate during training. The input
image size is standardized to 256 × 256 pixels, and a batch
size of 32 is selected for the experiments.

Fig. 4. Mean Absolute Error (MAE) of the validation synthetic set with
respect to the number of training samples.

B. Testing on a synthetic earthquake database

For comprehensive evaluation, synthetic data similar to the
training set is used for testing, comprising different sam-
ples from various areas but generated in the same manner
(see Section III-B). These samples are derived from distinct
Sentinel-1 satellite patches, collected at different time inter-
vals. Simulated displacement fields are applied to the post-
images, and the process involves precise co-registration and
spline resampling to introduce realistic surface displacements
with subpixel accuracy (approximately 1/100 of a pixel). This
ensures rigorous testing and allows for effective comparison
of the proposed model’s performance against other methods.

1) Comparisons with state-of-the-art methods: Mean Ab-
solute Error (MAE) is utilized as the metric for quantitative
analysis. The performance of different methods was evaluated
by comparing the predicted ground displacement estimation
against the simulated displacement data used in generating the
synthetic earthquake images. COSICorr [41], Ampcor [42],
and GeoFlowNet-optical [43] are employed as representative
displacement estimation methods and serve as comparative
benchmarks.

Specifically, the advanced frequency-based correlator,
COSICorr-frequency, estimates ground displacement directly
in the frequency domain, thereby avoiding the computational
burden of inverse Fourier transforms. Additionally, the spatial
correlation-based method, COSICorr-spatial, is also employed
to demonstrate its diverse and robust predictive capabilities.
Meanwhile, Ampcor, one of the most commonly used feature
tracking algorithms (packaged in the ROI PAC and ISCE SAR
processing software), enhances ground displacement tracking
between SAR images by applying different kernels (e.g.,
normalized/unnormalized Wallis filters) for high-pass filtering.
Lastly, GeoFlowNet-optical is a U-Net-based deep learning
method trained on a realistic synthetic dataset (FaultDeform)
to estimate full-field ground displacements from optical im-
agery. To provide a more intuitive comparison of the estima-
tion results, the predicted outcomes of different methods on
the synthetic earthquake images were visualized. (Note that
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Fig. 5. Displacement maps generated by five models—COSICorr-spatial, COSICorr-frequency, Ampcor, GeoFlowNet-optical, and GeoFlowNet-SAR on a
synthetic earthquake sample. The first column shows displacement maps in the range direction, and the second column shows displacement maps in the
azimuth direction. The ground truth refers to the synthetic displacement map used to warp the two satellite images. The results are presented in units of pixels.

Fig. 6. Curves of 3 profiles of the displacement map from Fig. 5 generated by the five models—COSICorr spatial, COSICorr frequency, Ampcor, and
GeoFlowNet-SAR. Results are expressed in pixels Top: range, Bottom: azimuth.

in the synthetic earthquake images, all displacement values
are kept within the range of [-1,1], as our primary focus
is on evaluating the performance of the model at sub-pixel
displacement estimation tasks.)

Before conducting the comparison of different methods,
the optimal parameter configurations for COSICorr and Amp-
cor were investigated. The performance of COSICorr-spatial,
COSICorr-frequency, and Ampcor was evaluated across var-
ious combinations of stride [1, 2, 4, 8, 16] (starting from 2
for COSICorr-frequency) and window sizes [32, 64, 128, 256].
The COSICorr-spatial method achieved the best estimation
performance with a stride of 16 and a window size of 64,
which is selected as the optimal configuration for subsequent
experimental comparisons. Similarly, the COSICorr-frequency
method achieved the best Range and Azimuth estimation
performance with a stride of 2 and a window size of 128.
For Ampcor, the lowest MAE was obtained with a stride of
16 and a window size of 64.

For GeoFlowNet-SAR, the number of training samples
significantly impacts the effectiveness of model training.
To investigate this parameter, the total number of sam-
ples was verified to observe its effect on the perfor-
mance of the model. The total number of samples was

set to [3000, 5000, 10000, 15000, 18000, 20000] sequentially,
with 90% of the samples used for training. According to
the validation results in Fig.4, the model exhibited the best
performance when the number of samples is 20,000. However,
the improvement in performance compared to using 18,000
samples is relatively marginal. Therefore, considering the bal-
ance between training costs and time efficiency, the number of
training samples was not further increased. In the subsequent
experiments, the comparative results used were derived from
models trained with 90% of 18,000 samples.

The proposed method utilizes a sliding 256×256 pixel win-
dow in case of a larger input image. Since the prediction output
is the same size as the input, the final displacement map is then
obtained by averaging the predictions value for each position
in overlapping regions (we typically perform 4 predictions for
each location). Fig.5 shows the azimuth-directed displacement
maps and range-directed displacement maps obtained by dif-
ferent methods on this synthetic earthquake sample. First, we
can see that the original GeoFlowNet-optical is not reaching
a competitive result. The overall contours obtained by the
four other methods are similar. However, there are noticeable
differences in texture and fault boundary clarity. The results
predicted by GeoFlowNet-SAR exhibit richer texture infor-
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mation and higher distinction near fault zones. Additionally,
as highlighted in the red-boxed regions, the estimation of
boundary areas is more closely aligned with the ground truth.
To provide a more detailed comparison of the estimation
among different methods, three representative profiles were
selected for analysis. Fig.6 highlights that GeoFlowNet-SAR
not only achieves peak predictions at fault boundary areas that
are more closely aligned with the ground truth but also exhibits
smoother fluctuations across the entire strip region. Despite
using the optimal parameter configurations, the comparative
methods still produce correlation maps with higher noise levels
than those obtained by GeoFlowNet-SAR.

TABLE I
MEAN ABSOLUTE ERROR (MAE) OF DIFFERENT METHODS ON THE

SYNTHETIC EARTHQUAKE DATABASE (VALIDATION SET)

Methods

Directions
Range Azimuth

COSICorr-spatial 0.0659 0.0776

COSICorr-frequency 0.0498 0.0471

Ampcor 0.0456 0.0425

GeoFlowNet-optical 0.1814 0.1900

GeoFlowNet-SAR 0.0326 0.0378

Table I lists the Mean Absolute Error (MAE) values calcu-
lated across a whole validation displacement map (1024 ×
1024) for the different methods. The global errors range
from 3.26e−2 to 7.76e−2 pixels, with higher errors generally
observed in the azimuth direction due to its lower spatial reso-
lution. The proposed GeoFlowNet-SAR achieves the lowest er-
rors (3.26e−2 in the range direction and 3.78e−2 in azimuth),
outperforming COSICorr-spatial, COSICorr-frequency, Amp-
cor,and GeoFlowNet-optical. Visual comparisons in Fig. 5
indicate that both COSICorr methods struggle with spatial
details, while GeoFlowNet-SAR provides smoother estima-
tions and better captures sharp changes near fault ruptures.
GeoFlowNet-SAR outperforms in both precision and spatial
detail preservation.

Fig. 7. The pre- and post- SAR images of Ridgecrest earthquake.

Fig. 8. The pre- and post- SAR images of Turkey-Syria earthquake.

C. Testing on Real Earthquake Cases

1) Ridgecrest Earthquake: On July 4 and 7, 2019, Ridge-
crest in Southern California’s Mojave Desert was hit by a
significant earthquake sequence, beginning with a foreshock
causing a rupture along a northeast-southwest oriented left-
lateral fault, followed by a mainshock, triggering a rupture
on a conjugate right-lateral fault with a northwest-southeast
orientation. For this sequence, various studies utilized remote
sensing images spanning the two earthquakes to estimate near-
field ground displacements associated with the surface rup-
tures. The resulting displacement maps allowed for evaluation
of the local strain field, thereby providing fresh insights into
the fault slip mechanism, and the degree of slip localization
and fault zone width along the rupture [9], [22], [43].

Since the images used during the training phase are derived
from simulated synthetic data, it remains an open question
whether the model adapts well when applied to images from
real cases. For this real earthquake scenario, we compare the
proposed model with COSICorr-spatial, COSICorr-frequency,
Ampcor, and GeoFlowNet-optical. The purpose of this com-
parison is to evaluate the performance of GeoFlowNet-SAR on
remote sensing images containing actual earthquake-induced
displacements, beyond just the synthetic earthquake data.
This also presents an opportunity to assess the robustness
of the model across different scenarios. For the Ridgecrest
earthquake, no publicly available ground truth displacement
maps currently exist. Nevertheless, comparing the displace-
ment results generated by different methods helps assess the
consistency between the proposed model and existing well-
established image correlation techniques. Moreover, visual
inspection of the displacement field near the fault rupture and
the presence of high-frequency noise in the displacement maps
partially reveal the errors identified by the different methods.

In addition, displacement estimation results using optical
imagery for this earthquake case are introduced as a reference
for comparison, where the optical displacement maps were
derived from high-resolution optical imagery (SPOT6 for
Ridgecrest) using the COSI-Corr-frequency method, which
is widely recognized as a standard for image correlation.
The reference map was produced with multiscale frequency
windows, and further cleaned through expert geological post-
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Fig. 9. Displacement maps generated by the four models—COSICorr-spatial, COSICorr-frequency, Ampcor, and GeoFlowNet-SAR on Ridgecrest Earthquake
images. The first column shows displacement maps in the range direction, and the second in the azimuth direction. The results are presented in displacement
distance (meters). The reference was computed using satellite optical imagery.

Fig. 10. Displacement maps generated by the four models—COSICorr-spatial, COSICorr-frequency, Ampcor, and GeoFlowNet-SAR on Turkey–Syria
Earthquake images. The first column shows displacement maps in the range direction, and the second in the azimuth direction. The results are presented in
displacement distance (meters). The reference was computed using satellite optical imagery.

processing [41]. Optical image correlation methods are known
to be more robust against high-frequency noise (e.g., speckle),
as optical image does not have the coherent scattering effects
of SAR. Moreover, there were no cloud artifacts during the
acquisition, and the optical resolution was superior, especially
in azimuth. As such, the optical results serve as independent
reference baselines (even if not a perfect ground truth), not
affected by the model under evaluation.

COSICorr-spatial, COSICorr-frequency, and Ampcor were
configured using the optimal parameter settings validated on
the synthetic dataset, while GeoFlowNet-SAR employed the
model previously trained on the synthetic data. The displace-
ment maps generated by the four methods are shown in Fig.9.
The pre-image, acquired on June 22, 2019, and the post-image,
acquired on July 16, 2019, are shown in Fig.7.

Both COSICorr-spatial and COSICorr-frequency capture
some displacement information in the overall image structure,
but exhibit noticeable noise and lack fine details, especially in
boundary and small-area displacement estimations. The Am-
pcor method demonstrates better detail capture, particularly

along edges, but still suffers from significant noise artifacts,
especially around the earthquake zone, making it challenging
to accurately interpret the ground displacement. GeoFlowNet-
SAR shows advantages in capturing primary displacement
patterns and details, particularly in the earthquake region
and complex boundary areas. It provides sharper details and
reduced noise levels compared to the other methods. However,
its superiority is not uniform across the entire map. In regions
with lower signal-to-noise ratios or subtle displacement vari-
ations, the improvements are less pronounced. Additionally,
while GeoFlowNet-SAR demonstrates better performance near
fault ruptures, it is still susceptible to residual artifacts in
these highly complex regions. In the vicinity of fault ruptures,
where sharp discontinuities dominate displacements, the three
comparison methods struggle to provide realistic displacement
estimations, often resulting in outliers near the rupture zones.
GeoFlowNet-SAR reduces such biases and better captures
near-field displacement patterns in this real-world case.

2) Turkey–Syria earthquake: As second test case, the
Turkey–Syria earthquakes occurred on February 6, 2023, in
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Southern Turkey near the Syrian border. Three seismic events
were recorded on that day, with the USGS identifying the
events as a shallow strike-slip fault earthquakes. Based on
the focal mechanism of the main earthquake, coupled with
aftershocks, and initial optically-derived image correlation re-
sults [44], this earthquake sequence initiated on the northeast-
southwest left-lateral Narlı fault, before triggering much larger
slip on the northeast-southwest left-lateral East Anatolian Fault
(EAF), before being followed several hours later by left-lateral
slip on the east-west Çardak fault.

Similar to the previous case study, this section compares the
proposed model with COSICorr-spatial, COSICorr-frequency,
and Ampcor using SAR images spanning the earthquake
event. As with the previous example, there is a lack of
publicly available ground truth displacement statistics for
this event. Therefore, the comparison is conducted through
visual inspection of the displacement maps generated by each
method, highlighting their differences and similarities, and
showcasing the performance of the different approaches in
this particular case. Similar to the Ridgecrest earthquake,
we introduce the prediction results of ground displacement
estimation using optical imagery for this earthquake case as
a reference for comparison. The optical reference results in
this case were generated from Sentinel-2 images using the
COSI-Corr-frequency method, following the same procedure
as in the Ridgecrest case. These reference maps were also
independently cleaned and validated by experts, ensuring their
use as unbiased benchmarks [44]. The displacement maps
generated by the four methods are shown in Fig.10. The pre-
image, acquired on January 29, 2023, and the post-image,
acquired on February 10, 2023, are shown in Fig.8.

In this earthquake event, COSICorr-spatial and COSICorr-
frequency capture the general outline of the displacement
pattern but struggle with finer details. Particularly in boundary
areas and noise suppression, they exhibit noticeable texture
noise, making it challenging to delineate the actual fault struc-
ture. The Ampcor method demonstrates some improvement
in capturing edge details within the earthquake zone, but
substantial noise persists, especially in regions with smaller
displacements, leading to instability and reduced reliability in
these areas. GeoFlowNet-SAR shows noticeable advantages in
the near-field region of the actual fault rupture. It achieves
better consistency on both sides of the fault, effectively
suppresses noise artifacts, and provides clearer displacement
patterns in complex areas. Furthermore, it recovers the more
subtle displacements associated with the eastern termination
of the Çardak fault (north of the EAF). These results indicate
that GeoFlowNet-SAR is well-suited for displacement field es-
timation in real earthquake events, leveraging SAR imagery for
all-weather, round-the-clock observation and enabling a timely
response to seismic events. However, while GeoFlowNet-SAR
demonstrates superior performance in regions with significant
displacement, its advantages are less pronounced in areas
with low signal-to-noise ratios or subtle displacement vari-
ations, where residual artifacts remain visible. Additionally,
the method’s performance can be sensitive to variations in
data quality and resolution, which may affect its robustness
in highly heterogeneous regions. These limitations suggest

room for further improvement to enhance its generalization
and adaptability across diverse scenarios.

Although displacement estimation results from optical im-
ages are introduced for visual comparison, these results cannot
be treated as strict ground truth. This is due to fundamental
differences in the acquisition geometries between SAR and
optical sensors, particularly along the range direction for SAR,
which cannot be directly compared with east-west displace-
ments in optical imagery without assuming a vertical compo-
nent. Furthermore, only partial spatial overlap exists between
the SAR and optical images, and the azimuth component,
which is more comparable to optical north-south motion, is the
noisiest in the Sentinel-1 data. Therefore, mean absolute error
(MAE) statistics between SAR-derived and optical-derived
displacements are not reported, as they would not reflect the
deviation from ground truth, but only the differences between
two modalities under distinct observation constraints.

D. Runtime Comparison Analysis

To evaluate the computational efficiency of the proposed
GeoFlowNet-SAR method in the task of ground displacement
estimation, we conducted a series of comparative experiments
using both synthetic and real earthquake data (see Tab. II).
The synthetic dataset serves as a controlled environment to
assess the fundamental performance of the algorithms, while
the real dataset evaluates their practical applicability. The com-
parison involves three methods, COSICorr-spatial, COSICorr-
frequency and Ampcor, all executed on a 16-core CPU, while
the proposed GeoFlowNet-SAR runs on a GPU.GeoFlowNet-
optical is not included in the runtime analysis, as its results
were generated on a different hardware setup, making direct
comparison inappropriate. Given its architecture is nearly
identical to GeoFlowNet-SAR, their runtimes are theoretically
expected to be almost the same.

TABLE II
RUNTIME (SECONDS) COMPARISON ON ONE SYNTHETIC SAMPLE

(1024×1024) AND THE TURKEY-SYRIA EARTHQUAKE (9514×24418)

Methods

Datasets image
1024×1024

The Turkey–Syria
Earthquake

GeoFlowNet-SAR 3.11s 108.94s

COSICorr-spatial 6.14s 1286.58s

COSICorr-frequency 5.18s 162.92s

Ampcor 53.91s 12559.96s

1) Synthetic Earthquake Database: The first experiment
was conducted on a synthetically generated dataset with a
resolution of 1024 × 1024, which provides a standardized
baseline for performance comparison across different meth-
ods. The experimental results demonstrate that GeoFlowNet-
SAR achieves a runtime of only 3.11 seconds, significantly
outperforming COSICorr-spatial (6.14s), COSICorr-frequency
(5.18s), and Ampcor (53.91s).

2) Real Earthquake Case: The second experiment was
conducted on real earthquake data acquired from the
Turkey–Syria earthquake event, with an image resolution
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of 9514 × 24418. This dataset was selected as a repre-
sentative case for performance evaluation. The experimen-
tal results reveal that GeoFlowNet-SAR completes the task
in 108.94 seconds, significantly outperforming COSICorr-
spatial (1286.58s), COSICorr-frequency (162.92s), and Amp-
cor (12559.96s). Specifically, GeoFlowNet-SAR achieves an
11.81-fold speedup compared to COSICorr-spatial, a 1.50-
fold improvement over COSICorr-frequency, and a 115-fold
acceleration relative to Ampcor.

These results underscore the advantages of leveraging GPU-
based deep learning architectures for ground displacement
estimation. By adopting an optimized network structure and
parallel computation capabilities, GeoFlowNet-SAR signifi-
cantly reduces computational time while maintaining high
estimation accuracy, demonstrating its potential for large-scale
applications. Moreover,GeoFlowNet-SAR is scalable when
processing large-scale real-world earthquake datasets.

V. CONCLUSION

This paper proposes a comprehensive UNet-based deep
learning framework, GeoFlowNet-SAR, which is designed to
estimate ground displacement from SAR image pairs with sub-
pixel precision. Compared to previous methods, GeoFlowNet-
SAR performs dense sub-pixel displacement estimation, re-
ducing the impact of spatial detail smoothing caused by
noise removal in earlier approaches. It also has superior
performance in regions with abrupt displacement changes or
discontinuities, outperforming state-of-the-art methods in near-
field displacement estimation for earthquakes. A high-quality
synthetic dataset generated based on realistic fault slip models
was utilized to train the model and evaluate its performance
using quantitative metrics, demonstrating the improvements of
GeoFlowNet-SAR compared to other methods. Additionally,
to validate the robustness and transferability of the model,
estimations were made and analyzed for two real earthquake
cases. The ability of GeoFlowNet-SAR to provide high-
resolution displacement estimates near fault boundaries holds
particular geophysical significance. Such detailed observations
enable better characterization of near-field deformation, which
is essential for constraining earthquake source parameters,
including fault geometry, rupture extent, and slip distribution.
Accurate mapping of these features supports improved under-
standing of fault mechanics and contributes to refining seismic
hazard assessments. In future work, we will focus on inte-
grating multi-source remote sensing data to estimate surface
displacements. By leveraging the complementary information
from different sources, the estimation errors inherent in single-
source data could be corrected.
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