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Abstract Fault markers in the landscape (scarps, offset rivers) are records of fault activity. The11

geomorphological characterization (such as the scarp height, fault dip, etc.) of these markers is12

currently a time-consuming step with expert-dependent results, often qualitative and with uncer-13

tainties that are difficult to estimate. To overcome those issues, we present a proof of concept14

study for the use of deep learning in morphotectonics, specifically on fault markers. We developed15

a Bayesian supervised machine learning method using one-dimentional (1D) convolutional neu-16

ral networks (CNN) trained on a database of simulated topographic profiles across normal fault17

scarps, called ScarpLearn. From a topographic profile, ScarpLearn is able to automatically give the18

scarp height with an uncertainty. We apply ScarpLearn for the characterization of normal active19

faults in extensional settings such as the Trans-Mexican Volcanic Belt and Malawi Rift system. From20

those specific case studies, we will explore the progress (computation time, accuracy, uncertain-21

ties) that machine learning methods bring to the field of morphotectonics, as well as the current22

limits (such as biais). Our results show that we are able to develop a CNN model that is estimating23

scarp heights on topographic profiles from 5m resolution digital elevation model. We compared24

the results obtained with ScarpLearn and other non deepl-leaning methods. ScarpLearn achieves25

similar accuracy while being much faster and having smaller uncertainties. To use and invite to ex-26

tend our study, we share the codes to create the synthetic scarp database and of the CNN model27

ScarpLearn.28

1 Introduction29

Fault marker characterization is crucial to understand past fault activity and future potential impact of earthquakes30

(i.e., Crone andHaller, 1991;Wells andCoppersmith, 1994; Schlagenhauf et al., 2008). Indeed, this activity is recorded31
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in the landscape leaving a morphological trace recording the historical physical processes that govern fault rupture32

(i.e., Zhang et al., 1991; McCalpin and Slemmons, 1998; Kurtz et al., 2018). Among the examples of fault marker33

characterization, the offset’s quantification created by ruptures that have reached the surface is a parameter directly34

used to estimate fault rates, spatial patterns of past ruptures, and numbers of ruptures (i.e., Arrowsmith et al., 1998).35

This information is needed to model the past activity of the fault and estimate the potential hazard for society.36

In this study, we focus on normal faults that are often responsible of shallow and destructive earthquakes in nu-37

merous inhabited regions of the world (i.e. Central Italy, Wasatch Mountains, Central Mexico). Those faults marks38

out the landscape through a vertical offsets leaving a typical trace: a scarp (Fig. 1). The scarp is the expression of39

earthquake in the landscape when the rupture reaches the surface. It is due to the slip along the fault plan that cre-40

ates a free face which slope is greater than the angle of surrounding hillslopes. This scarp then undergoes erosive41

processes through times, altering its slope by degrading it (Wallace, 1977; Nash, 1980). Further rupture on the same42

fault splay may rejuvenate the scarp, which will be affected by erosion once again, altering its shape. Such normal43

fault scarps have been numerically modeled to characterize and decorrelate the forcing from seismic ruptures and44

erosional processes (e.g., Avouac and Peltzer, 1993; Hodge et al., 2020; Tucker et al., 2020; Gray et al., 2021; Holtmann45

et al., 2023). These models focus on the variation of elevation along scarp over time. And both models and obser-46

vations show that one scarp can also be the sum of various slopes reflecting the complex history of the processes47

shaping the landscape, both constructive and destructive.48

For tectonic characterization purposes, the morphology of normal fault scarps is mainly analysed through topo-49

graphic profiling across the fault. And for such reason most studies focus on the scarp height as it is the most direct50

parameter signing the cumulative amount of seismic slip (Fig. 1). More precisely, the classic scarp height estimation51

can be divided into two stages:52

• a mapping step which consists of delimiting three portions of the topographic profile that corresponds to the53

hanging wall, the footwall, and the scarp (Fig. 1). The complexity lies in the possible disturbance of the topog-54

raphy created by erosion, sedimentation, drainage, non-geologic related features (trees, antropic disturbance,55

etc.)56

• an estimation step where these portions are fitted to three horizontal lines, which are used to estimate the57

scarp height (Fig. 2). However, particular attention must be paid to where the scarp height measurement is58

performed. Some studies focus on the middle of the scarp (e.g., Johnson et al., 2018; Hodge et al., 2019b; Wolfe59

et al., 2020); others on the locationwhere the scarphas amaximumslope (e.g., Scott et al., 2022); others projects60

the hanging wall (or the footwall) on the inflexion between the footwall (or hanging wall, respectively) and the61

scarp to bracket the scarp height (see in supplementary the Fig. 12).62

In the last 20 years, to get the accurate topographicmeasurements, researchers used to go into thefield tomeasure63

Real-Time Kinematic positioning profiles and manually estimate the scarp height (e.g., Mitchell et al., 2001). For64

the last 10 years, thanks to the remote sensing democratization (drones, access to satellite data), researchers have65

computed digital elevation models (DEM) that cover several tens to hundreds of kilometres of fault zones at high66

resolution (<5 m). It therefore became necessary to create the tools to systematise the measurements. In the last 567

years, several research groups have developed methods to estimate the scarp height by empirical, semi-manual or68
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semi automatic approaches (e.g., Stewart et al., 2018; Johnson et al., 2018; Hodge et al., 2019a;Wolfe et al., 2020; Scott69

et al., 2020; Salomon et al., 2021; Bello et al., 2021; Scott et al., 2022). We can group these approaches into six main70

categories:71

• Manualmethods: for each profile, once the portions of hangingwall, footwall and scarp are choosemanually, a72

line is empirically fitted as best as possible through the three portions (identified visually). This manual fitting73

will exclude non-tectonic perturbations (tree, valleys) Ameasure of uncertainty can be estimated by identifying74

the maximum and minimum scarp heights.75

• Semi-manual methods such as "Monte Carlo Slip Statistics Toolkit" (MCSST) by Wolfe et al. (2020): inspired by76

manual methods, here the fit is done by least square optimization. The manual part consists in choosing the77

limits of the three portions. The uncertainty can be estimated fromMonte Carlo simulations which models all78

scarp heights by considering the least square fitting uncertainties of each three portions.79

• Semi-automatic methods such as Scarp Parameter Algorithm (SPARTA, Hodge et al. (2019a)), which needs a80

manual calibration by pointing manually the portion boundaries on some reference profiles to then automat-81

ically estimate the portions on other similar profiles. The topographic portions are finally fitted to lines using82

least-squares optimization. Thismethod requires the user to choose the filter applied to the topographic profile83

and associated filter parameters. Moreover, there is no uncertainty estimation.84

• Semi-automatic methods such as Scott et al. (2022), providing both a mapping and a scarp height estimation.85

This method is semi-automatic as it first requires a manual calibration on a restricted zone of the study area.86

Once this calibration is done, the algorithm can be run on the whole study area. The height estimation is87

obtained by a parameter grid search and by fitting lines to the topographic flats bordering each fault using88

least-squares optimization. To obtain the uncertainty of the scarp height, the algorithm takes the 16th - 84th89

percentiles of the heights obtained from satisfactory setting conditions of confidence they have chosen.90

• Automaticmethods using an analytical solution such as Sare et al. (2019): it recovers the location and amplitude91

of the scarp through template matching. In this study the aim is mainly to test the detection capability, while92

the validation of the scarp amplitude estimation is only slightly discussed. No uncertainty is estimated for the93

scarp height.94

• Automatic method using Linear Discriminant Analysis (LDA), such as (Vega-Ramírez et al., 2021) for offshore95

settings in order to automatically map normal faults and to obtain the relative age of scarp. This approach has96

thus a different scope than our study here.97

Most of these methods have systematised detection and/or height measurements (Tab. 1). However, among those98

who focus on estimating the scarp height, they are all time-consuming because still at least partlymanual, and some-99

times even needing a person-dependent calibration step. If this calibration is not frequently performed, themethods100

can either perform a wrong estimation or not provide any estimation. In other words, among the most automatic101

methods, most of them only succeed in ideal cases and/or when calibration is carried out on an extremely similar102

profile.103
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To overcome these issues,machine learningmethods and in particular deep learning can represent an interesting104

solution. Today, artificial intelligence techniques have proven to be efficient in performing many automatic tasks105

in Geosciences (i.e., Ren et al., 2020), in particular using Convolutional Neural Networks (CNN), a deep learning106

architecture designed to process images or time series. Specifically in the field of morphotectonics, machine deep107

learning has only been scarcely used, such as for the automatic mapping of open fractures onshore (Mattéo et al.,108

2021) or to quantify the rock trait distributions of rocky fault scarps (Chen et al., 2023).109

Here we propose to automatize the fundamental task of scarp height estimation by evaluating the ability of a110

supervised CNN (ScarpLearn) trained on realistic synthetic topographic profile catalogs to characterize any normal111

fault vertical displacement within a second.112

2 Scope113

The purpose of this investigation is to develop and evaluate an algorithm (ScarpLearn) that automatically estimates114

the scarp height for normal faults from a topographic profile with an uncertainty quantification. ScarpLearn targets115

natural cumulative normal fault scarps, i.e. scarps that may have been created by one ormore earthquakes and have116

undergone erosion. The results are independent of the user, and thus reproducible with the trained ScarpLearn117

machine learning model. The profiles, perpendicular to the fault, are first extracted from terrain elevation models.118

Here ScarpLearn measures the scarp height with an uncertainty localized at the middle of the profile. ScarpLearn is119

able to ingest topographic profiles disturbed by erosion, drainage, vegetation, and other perturbations.120

As there is not enough real data labelled (i.e. profiles with known ground truth scarp heights) to train the neural121

network in the literature, ScarpLearn is trained on synthetic topographic profiles created by our simulator SimScarp.122

The chosen characteristics to create the catalog is crucial as it can restrict the scope of ScarpLearn. Synthetic topo-123

graphic profiles are offset by a fault affecting the profile in its center (range of ±5 %) (Fig. 3). This fault can rupture124

several times creating a cumulative fault scarp. At each inter-seismic period the scarp is subjected to some diffuse125

erosion, and random perturbations, such as trees, are also added to produce a realistic profile. Several secondaries126

faults are also simulated in order to perturb the profile. Broadly, we are attempting to simulate first order geomor-127

phologic imprints using theoretical knowledge. For example, wehave excluded back-tilting or rotation of the hanging128

wall, regolith mobilization, non-colluvial geomorphic processes, pedogenic processes.129

In this manuscript we will then validate the algorithm with synthetic data not included in the training set. Then130

we will apply this algorithm on real cases fromMexico and Malawi in order to test ScarpLearn in real conditions. In131

addition, we have compared ScarpLearn’s results with existing semi-manual and semi-automatic methods: MCSST132

(Wolfe et al., 2020) and SPARTA (Hodge et al., 2019a) both on synthetics and real data. These methods are selected133

because they use the same scarp height measurement convention as chosen in this paper (measured in the middle134

of the scarp width such as in Fig. 2) and are representative of existing approaches for comparison (semi-manual and135

semi-automatic).136
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3 Methodology137

3.1 Synthetics created with numerical model: SimScarp138

Convolutional neural networks require a large and various (balanced) dataset for training, this is a challenge for139

morphotectonic studies because there are not enough real examples of normal fault scarp precisely characterized140

in the literature. This is due to the time consuming and difficult task to build such a database and to sum up the141

characterized normal fault scarps data mostly incomplete for each referenced sets (Nurminen et al., 2022), but also142

to the fact that the height estimation will never be certain as there is no independent characterization available. In143

consequence, we have opted to create synthetics catalogs although it implies simplifications of natural processes. For144

this purpose we have developed a simulator SimScarp, which can create topographic profiles of synthetic normal145

fault scarp with random parameters resulting from robust statistical distributions (Fig. 3). These distributions are146

designed to reflect realistic morphologies (see Tab. 2 and Fig. 13) but also to represent a wide range of examples,147

therefore SimScarp is based on a set of parameter values picked from controlled uniform distributions.148

For each training set, we can control the length and resolution of the profiles, as well as statistical distributions149

of the parameters used. For each profile, the simulator SimScarp randomly samples: the diffusion constant, the150

hanging wall slope, the footwall slope, the number of faults, the fault dip, the fault location, the total cumulative slip,151

the slip rate, the number of event and some perturbations parameters (see Tab. 2 and Appendix A). Using the slip152

rate, the total cumulative slip and the number of event, the model recalculates the throw per events and the period153

between each event. For each event the model creates a scarp at the center of the scarp. Then a diffusive erosion154

is applied during the inter-event period, following Smith and Bretherton (1972)’s equation simulated as proposed in155

Nash (1980):156

dZ

dt
= κ

d2Z

dx2
(1)157

where Z is the elevation, t the time, x the horizontal distance and κ the diffusion constant (m2/Kyr). We sample the158

randomdiffusion constant κ once, as a uniformdistribution between 0.5 and 10m2/Kyr. This range includes arid con-159

ditions (0.5-5 m2/Kyr) and tropical condition (up to 10m2/Kyr). We also allow secondary fault scarps as perturbations160

both on the hangingwall and footwall (but not in the center), submitted to diffusion aswell. The total scarp heightSH161

is finally calculated as the sum of scarp heights from each event (without taking into account the secondary scarps162

on the sides).163

Lastly, Simscarp adds non-tectonic perturbations at random locations along the profile in order to create a realis-164

tic morphologies using random parabolas or steps functions such as in Hodge et al. (2019a) to simulates hills, valleys165

or trees. More details are provided in the Appendix A.166

We simulate with SimScarp a database of 5000 different topographic profiles with their related scarp height SH167

(the label), to be used as training set by the machine learning model ScarpLearn. Each profile is 1km long, with a168

resolution of 5m (it is a vector of size 200). The total scarp height SH ranges between 0 and 50 m.169
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3.2 Convolutional neural networks: ScarpLearn170

To learn the scarp height, we designed a 1-dimentional regression convolutional neural network (CNN) with 3 layers171

called ScarpLearn. This choice is based on the fact that each profile is an ordered vector, similar to a time series,172

which thus benefits from convolution operations able to extract meaningful features at different scales. Each of173

the 3 layers is a convolutional layer followed by a pooling layer and a ReLu activation function (Fig. 4). To have an174

uncertainty (or confidence interval) associated with each profile, crucial for morphotectonic analysis in particular175

for the scope of probabilistic seismic hazard models, we use variational Bayesian learning. We follow the method176

Bayes by Backprop of Blundell et al. (2015) incorporated in Pytorch by the package Blitz (Esposito, 2020) that allows to177

assign probability distributions on the weights of a neural network. During its training, the weights of the CNN will178

be iteratively optimized in order to reduce the error between predicted and real offsets while estimating consistent179

uncertainties (i.e. confidence interval). The balance between the two factor is adjusted by the complexity costweight,180

here that we defined following Shridhar et al. (2019a,b) as a Blundell method.181

3.3 Training using synthetics catalogs182

We train ScarpLearn on our synthetic set (5000 samples) using a batch gradient descent of 32 samples per batch. For183

each batch, themodel error is calculated using a loss function that is further back-propagated to update all themodel184

parameters in order tominimise the Kullback-Leibler (KL) divergencewith the true Bayesian posterior Blundell et al.185

(2015). For each prediction, on the batch, we measure the accuracy by simulating the prediction distributions and186

extract a mean to compare with the correct label. This process is repeated for 300 iterations (i.e. epochs). After each187

epoch, we estimate the validation error of the validation set. We follow the evolution through the epochs of the ELBO188

loss which consists of the sumof the KLDivergence of themodel with themean squared error and the accuracy (here189

the mean absolute error) of the model optimization (Fig. 5). Loss and accuracy curves decline rapidly over epochs,190

indicating a good convergence of the model. Training ScarpLearn on the synthetic data yields a mean accuracy on191

the validation set of 3.8 m. Concerning the confidence interval, 10% (Fig. 5) of the predicted target intervals are192

integrating the ground truth value. To convert this confidence interval into uncertainties, we thus multiply it by 10193

to simulate a 1σ uncertainty.194

3.4 Application and comparison using synthetics and real study cases195

We will first test our model by evaluating its prediction power on new synthetic samples. We also compare these196

results with the cited existing methods (the semi-manual MCSST and the semi-automatic SPARTA).197

Testing ScarpLearn on real data is more challenging as there will always be unknowns due to the inherent na-198

ture of scarp measurement (no ground truth available). We would require a measurement just before and just after199

an earthquake (in terms of hours), which is an impossible task, especially for cumulative Holocene scarps. InSAR200

(Interferometric Synthetic Aperture Radar), optical or Lidar (Laser imaging detection and ranging) data before and201

after an earthquake are currently available with a revisit time of several days at most, and most frequently months.202

However, these measurements have either low spatial resolutions (>10m) for measurements with small temporal203

baselines (days, e.g. InSAR) or high spatial resolutions (cm) for measurements but with large temporal baselines204

(months, e.g. LiDAR), the latter being more likely to have undergone erosion processes.205
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Since it is not possible to validate with real data, we are limited to compare the results of real samples to existing206

methods. Performing a test by comparing with other methods is however challenging. Indeed, the scarp height’s207

measurements by manual, semi-manual or semi-automatic methods also include simplifications and errors. These208

measurements are therefore not the ground truth, yet the comparison is crucial to analyze the benefits and the limits209

of every method.210

4 Results211

4.1 Validation and comparison using synthetics cases212

First, to compensate for the lack of ground truth data, we propose to compare scarp heights obtained with MCSST213

(semi-manual method), SPARTA (semi-automatic method) and ScarpLearn on synthetics tests. We test on two new214

test sets of synthetic samples of 100 profiles each:215

• a simple set, with 1, 2 or 3 faults, with low regional slopes (between -5° and 10°), and few perturbations (see216

appendix Tab. 5)217

• a complex set, also with 1, 2 or 3 faults, but with a wide range of regional slopes (between -10° and 25°), and218

more perturbations (see appendix Tab. 6)219

4.1.1 Validation of ScarpLearn using synthetics cases220

We apply ScarpLearn to the two test sets of synthetic data (as for the training set, each profile is 1km long at 5m221

resolution): the whole inference takes less than 1 minute. By comparing with the ground truth value, ScarpLearn222

yields a mean absolute error (MAE) of 3.9 m for the simple set and 5.7 m for the complex set. (Fig. 6-a and Tab. 3223

for other metrics). Furthermore we observe that where the predictions are correct, the uncertainty bars are small,224

while the wrong predictions also show larger estimated uncertainties allowing to encompass the true values (Fig.225

6). We obtain 2.5 ± 1.1 m (mean ± std) of uncertainty (at 1σ) for the simple test set and 5.0 ± 2.7 m (mean ± std) of226

uncertainty for the complex test set. The relative uncertainties obtained show a scattered distribution (15± 14 % and227

27± 22 %)228

We also analyzed the results by separating the samples containing with only one fault, only two faults, or only229

three faults (Tab. 7, and Figs. 14-a, 15 and 16). ScarpLearn yields, respectively, for the simple setting an MAE of 2.3230

m, 3.6 m and 4.4 m. As the number of faults increases, the model becomes less accurate for simple setting. For the231

complex setting, the MAE not show the same trend as we obtain MAEs of 6.2 m, 5.7 m and 7.6 m.232

4.1.2 Evaluation of MCSST on synthetic cases233

The semi-manual estimation by MCSST was performed on 50 profiles, and it required 3 to 5 min per profile, so for a234

fault segment it requires 3 to 4manpower hours to process them. By comparingwith the true values,MCSST yields an235

MAEof 3.1m for the simple set and 5.9m for the complex set (Fig. 6-b andTab. 3 for othermetrics). To be noted, fewer236

samples were processed compared to section 4.1.1, so the MAE can’t be directly compared. We obtain an uncertainty237

of 10.7± 9.4 m (mean± std) (at 1σ) for the simple test set and 22.8± 18.8 m (mean± std) for the complex test set. The238

high standard deviations show how the uncertainties have a scattered distribution.239
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Weanalyzed separately theMCSST results of the samples containing only a single fault ( 25 profiles for each simple240

and complex sets, see Fig. 14 and Tab. 8 for others metrics). MCSST yields anMAE for the simple setting of 1.0 m and241

7.2 m for the complex setting.242

4.1.3 Evaluation of SPARTA on synthetics cases243

In less than an hour, we calibrated and applied the semi-automatic SPARTA method on both simple and complex244

synthetics sets. However, SPARTA does not provide uncertainties and out of 50 tested profiles, we obtained results245

only on 29 profiles (for the simple set) and on 12 profiles (for the complex set). By comparing with the true values for246

the few estimated profiles, SPARTA yielded an MAE of 8.5 m for the simple set and 10.6 m for the complex set. (Fig.247

6-c and Tab. 3 for other metrics).248

When analyzing the results of SPARTA on the 25 of 1-fault profiles only (see Fig. 14 and Tab. 8 for others metrics),249

we obtain results for more profiles: 13 for the simple setting and 10 for the complex setting. We obtained also better250

MAE for the simple setting. Respectively for the simple and the complex settings, we obtained a MAE of: 6.4 m and251

15.4 m. In all synthetic cases with our calibration, SPARTA yields less accurate results than ScarpLearn and MCSST.252

4.1.4 Comparison of ScarpLearn, MCSST and SPARTA using synthetics cases253

With our calibration, SPARTA was only able to provide results on 20% to 50% of the profiles. Moreover, in all tests, it254

gives higher mean absolute errors than MCSST and ScarpLearn (Tab. 3). In the synthetic cases with 1, 2 or 3 faults,255

by comparingMCSST with ScarpLearn on the same 50 profiles, we can observe that both codes give similar accuracy256

(Tab. 3). The main discrepancies come from the uncertainties, which are divided by 5 for ScarpLearn, but still257

allowing to reach the true value (the Prediction Interval Coverage Probability (PICP) between 80% and 86% at 3σ).258

On the simple data set with only 1 fault (Tab. 8), MCSST yields a lower MAE than ScarpLearn. However, ScarpLearn259

yields better uncertainties (at 1σ) (2.5 m instead of 4.5 m). For the complex samples, MCSST and ScarpLearn are very260

similar (7.2 m for MCSST, 7.7m for ScarpLearn), yet the uncertainty of MCSST (15.5 ± 14.0 m at 1σ) is higher that the261

one obtained by ScarpLearn (5.7± 4.4 m)262

In summary, ScarpLearn is much faster than MCSST with a speed gain factor of 2 orders of magnitude, achieves263

similar accuracy with a smaller uncertainty. To note, for the simple cases of 1-fault profiles, MCSST performs better.264

To obtain the better results for these cases with ScarpLearn, we have re-trained ScarpLearn with a learning database265

consisting only of 1-fault profiles. This new ScarpLearn_1F model gives better results than MCSST for the simple set266

only capturing 1 fault branch, as well as for complex cases (Tab. 8). We therefore recommend using ScarpLearn_1F267

in cases where the user is confident that the profile contains only one fault scarp.268

4.2 Application and comparison using real study cases269

Wewill compare the scarpheights obtainedwith ScarpLearn,MCSST (semi-manualmethod), SPARTA (semi-automatic270

method) on 2 real study sites.271

Wewill thus extract topographic profiles perpendicular to the fault in different areas where there is no bias. This272

means areas that correspond to the conditions in which ScarpLearn has been trained, i.e. areas with :273

• no or little anthropogenic infrastructure274
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• where the scarp is not totally degraded by gravitational erosion275

The results of each method are compared and discussed.276

4.2.1 Case study 1: Ameca Fault, Mexico277

TheAmeca Fault is located in the Trans-MexicanVolcanic Belt inMexico (Fig. 7). This region is affected bymore than278

600 potentially active normal faults yet less than 5% have been correctly characterized by paleoseismological studies279

(Lacan et al., 2018; Núñez Meneses et al., 2021). In this context, a robust and automatic method to characterize the280

normal fault active scarp in a global, reproducible, robust (not expert-dependent) quantitative way is very valuable281

and a great step towards a better characterization of the regional seismic hazard. We focus on Ameca-Ahuisculco282

fault system (Fig. 7). This fault crosses three distinct geomorphic formations, distinguished by their age. First, there283

is an active alluvial fan, which is offset by the fault generating scarps of approximately 5 meters height. Further284

East, there is an older alluvial fan, also offset by the fault forming scarps of approximately 10 to 15 meters height.285

Finally, the fault crosses the base of themountain front, marking the boundary between themetamorphic basement286

of the Sierra Ameca and the sedimentary fill of the Ameca basin. Here, the cumulative displacement along the fault287

is estimated to exceed 20 meters. Due to the presence of multiscarps, we extract multiple profiles covering the same288

areas: in fact, for each parallel scarp the is one profile crossing it at their middle. ScarpLearn estimates the height289

of the scarp located near the center of the profile. We sampled profiles every 100 meters on the 5m resolution DEM,290

perpenticular to the Ameca-Ahuisculco fault system (Fig. 7) mapped in Núñez Meneses et al. (2021). Each of the 117291

profiles is 1 km long.292

We use SPARTA, MCSST and ScarpLearn to process these profiles (Figs. 8, 18, 17 and Tab. 4). ScarpLearn and293

MCSST allow us to obtain results for all profiles, which is not the case with SPARTA (only 17 out of 117). SPARTA294

with our calibration is less accurate. When we compare MCSST and ScarpLearn, we get similar results (mean height295

around 9m), and a t-student test shows that 81% of their results are in agreement (t-student value <1) and only 2% of296

results are in complete disagreement (t-student value >3) (Fig. 8-E). The results in disagreement are for cases where297

the scarps are either very small (<1m) or very large (>30m) (Figs. 17-A-B). The differences between the results give a298

distribution centered around 0 (mean -0.1 ± 4.5 m (std)), which means that neither MCSST nor ScarpLearn tend to299

under- or over-estimate the scarp heights relative to each other (Fig. 8-F). The mean absolute difference is 2.9 ± 1.8300

m, but when we look at the cumulative distribution of this difference, it appears that 75% of absolute difference is301

less than 3.6 m (Fig. 8-G). So there are only strong outliers having large differences. The uncertainties obtained by302

MCSST and ScarpLearn are similar (Tab. 4). Their distributions show, however, that MCSST has strong outliers (Figs.303

17-C-D) and that ScarpLearn uncertainties tend to increase with the value of the scarp height (Fig. 17-C).304

4.2.2 Case study 2: Bilila-Mtakataka Fault, Malawi305

The second area studied is inMalawi, along the Bilila-Mtakataka Fault that is part of theMalawi Rift systembelonging306

to the East African Rift System (e.g., Jackson and Blenkinsop, 1997). We extracted topographic profiles from the 5307

meters resolution DEM from Hodge et al. (2019a,b). We focus on the Ngodzi fault segment, here the orientation of308

the fault scarp follows a zigzag pattern due to the presence of transfer faults. This fault intersects the foliated gneissic309

bedrock and a Quaternary sedimentary fill Hodge et al. (2018). Profiles are perpendicular to the fault trace mapped310
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in Hodge et al. (2019a). We extracted 161 profiles of 1 km long of 200 points each (Fig. 9).311

We compared SPARTA, MCSST and ScarpLearn on these profiles (Figs. 10, 20, 19 and Tab. 4). ScarpLearn obtain312

on average a scarp height of 22m. With SPARTAwe obtain 89 results out of 161 on this study site, andwhen compared313

with ScarpLearn, the mean absolute difference is 5.7 m. When comparing MCSST and ScarpLearn scarp height esti-314

mations, the t-student test shows that 62% of results agree, while 6% of results disagree completely (Fig. 10-E). The315

difference between the results shows a distribution that appears to be symmetrical, although the mean difference of316

0.7± 8.5m (std) shows thatMCSST gives slightly higher scarp heights than ScarpLearn (Fig. 10-F). Themean absolute317

difference betweenMCSST and ScarpLearn is 6.2± 5.6 m, and the cumulative absolute difference distribution shows318

that 70% of results have an absolute difference < 7.0m (Fig. 10-G).MCSST gives higher uncertainties than ScarpLearn,319

and is not correlated with scarp height (Figure 19-C-D).320

5 Discussion321

In our tests with synthetic data, ScarpLearn yields results comparable to MCSST. Yet, ScarpLearn demonstrates sig-322

nificantly faster processing times (∼ 2 orders of magnitude faster) and provides smaller uncertainties compared to323

MCSST. Specifically, ScarpLearn appears to be slightly more accurate for in scenarios involving 2 or 3 faults than324

MCSST. This is because multiscarp cases assign shorter hanging wall and footwall surface, which pose challenges325

for precise fitting in MCSST. Conversely, MCSST is more precise for the 1-fault case, likely due to its effective fit on326

larger hanging wall and footwall slopes. For this reason, we have trained a specialized version of ScarpLearn just for327

the 1-fault case, ScarpLearn_1F, giving then better results to MCSST for these cases.328

SPARTA was not able to provide an estimation for a majority of profiles, especially from the synthetic test set and329

from the Ameca fault. This can be explained by the fact that SPARTA is not designed for multiscarp profiles. It can330

also be explained by the calibration. Indeed, on the Ameca F. site, manual calibration would have to be performed331

separately for each fault segment, as the profiles cross several geomorphologies (long term, alluvial fans of different332

ages, etc.). In addition, a generic calibration is impossible on our synthetics, as we randomly parameterize the pro-333

files (slopes, diffusion, dip, etc.). However, on the Bilila-Mtakataka Fault zone, its performance is higher, probably334

because the code has been designed, tested and published on these data.335

The synthetic database allows us to train ScarpLearn effectively, since in the real cases we obtain similar results336

than MCSST. Among the profiles where the results differ (Fig. 11), we can identify different reasons:337

• For cases with many trees, MCSST seems to be perturbed to find the scarp height. This is probably because338

trees perturb the fit of the hanging wall and footwall, MCSST thus yields large uncertainties (e.g. profile 8 in339

Fig. 11-B)340

• For cases with cumulative long-term scarps (scarp height > 50 m) (e.g. profile 59 in Fig. 11-A or profile 118 in341

Fig. 11-B), there is often a slope’s change in the scarp that is likely due to climatic changes over time (see profile342

118). This seems to pose a problem for ScarpLearn, since it has only learned cases with constant diffusion.343

Moreover, for semi-manual methods (MCSST), it is difficult to know which scarp to take into account (change344

in slope). Here, we have taken the whole scarp (with the two slopes), which explains why MCSST gives higher345

scarp heights.346
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• For particular cases, such as flat-bottomed rivers close to the foot of the scarp, they were not included in347

ScarpLearn (we have only used hyperbola-shaped valleys). This prevents ScarpLearn from differentiating be-348

tween a flat river-bottom surface and the slope of the hanging wall (see profile 76 in Fig. 11-A and profile 34 in349

Fig. 11-B).350

• Cases where faultmapping is poorly done, such as profile 168 in Fig. 11-B, where the scarp is far from the center351

of the profile. In this case, ScarpLearn estimates the scarp height at the wrong location.352

• Multiscarp cases, as with synthetic data, this configurationmakes the fit inMCSST of hanging wall and footwall353

slopes more complicated (shorter zones) (profile 20 in Fig. 11-A)354

• Cases where erosion is not only due to diffusion, e.g. profile 115 in Fig. 11-A affected by a landslide; which here355

causes high uncertainty in MCSST but which for other cases could also disrupt ScarpLearn.356

MCSST and ScarpLearn methods are more consistent for Ameca F. study than Bilila-Mtakataka F. study. We ex-357

plain this because:358

• the fault is better mapped in the case of Ameca, in fact in Malawi we used a simplified mapping from a study359

of a regional scale, whereas in Ameca the mapping was obtained from a local paleoseismological study.360

• the presence of trees in Malawi disturbs MCSST, which has difficulties in fitting slopes, while ScarpLearn can361

probably better filter out high-frequency noise.362

Using Scarplearn, for the first time we can calculate the scarp height continuously over the whole fault in just363

a few seconds, giving us much more information about the fault. ScarpLearn presents thus as a robust alternative;364

however, it is important to ensure its usage under appropriate conditions. To ascertain these conditions, meticulous365

expert mapping is required. This mapping should encompass fault traces, flat river areas, landslide contours, and366

other potential scenarios to verify under which conditions ScarpLearn can be used. In fact this was also true for any367

previous methodology (MCSST, SPARTA, etc.) In the future, it will be interesting to complete the learning database,368

either with real cases, or with more complex processes that will enable ScarpLearn to be effective on more various369

scenarios.370

6 Conclusion371

We have developed a machine learning model called ScarpLearn capable of estimating the scarp height of normal372

faults as well as estimating its uncertainty based on 1-dimensional topographic profiles (extracted from Digital Ele-373

vation Models). Training with synthetic data has enabled us to obtain a efficient CNN model that can be applied to374

a variety of real datasets (here on case study DEMs of 5m resolution in Mexico and Malawi). In our tests with syn-375

thetic data, ScarpLearn gives similar results than existing semi-manual methodology (MCSST). On the other hand,376

ScarpLearn is two order of magnitudes faster and achieves smaller uncertainties. The same applies to real data:377

ScarpLearn is comparable to semi-manual method and only disagrees on less that 10% of the cases. Although the378

distribution of residuals is centered around zero, there are complicated cases where the ScarpLearn differs from the379

MCSST. It’s reflecting the fact that ScarpLearn has been trained by synthetic data that does not take into account some380
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complex flied configurations: long term cumulative scarp (with diffusion rates variations, flat rivers, etc). Although381

ScarpLearn is automatic, it is still necessary to have an expert overview on the fault mapping, the geomorphological382

mapping and on the local climatic and topographic context in order to verify if ScarpLearn can be applied or not,383

depending on the fault scarp training model. Nonetheless, once these conditions are fulfilled, ScarpLearn allows to:384

1) gain a considerable expert time (few minutes instead of multiple hours), 2) obtain reproducible results not user-385

dependant, and 3) obtain high resolution estimations with realistic uncertainties. This provides therefore a reliable386

method to perform fault scarp analysis, to be developed for strike skip or reverse faults as well.387

7 Figures388
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Figure 1 Example of a normal fault scarp in Italy in the Apennines which shows the co-seismic rupture of the 30th October
2016 Norcia earthquake at the base of the cumulative scarp created by previous ruptures (modified from Pousse-Beltran
et al. (2022)). A) Photo view without interpretation B) with interpretation C) AA’ topographic profile across the DEM (Digital
Elevation Model) showing footwall and hanging wall (real data).

Figure 2 Sketch showing the scarp height’s definition used in this manuscript. Here the scarp height is measured at the
center of the width of the scarp.
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Figure 3 Synthetic normal fault scarp produced by our simulator SimScarp to train the CNN ScarpLearn. Step 4 is repeated
as many times as required in order the follow the input parameters (here the total number of earthquakes). The total cumu-
lative scarp height (in meters) is used as the ground truth label by ScarpLearn.
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Figure 4 Schematic representation of the pipeline for scarp height characterization: ScarpLearn (1D convolutional neu-
ral networks). Between input layer and output layer, there are 3-convolutional layers fully connected layers including an
Bayesian inference. The input is a topographic profile across the fault trace. The output of the ScarpLearn is the value of the
scarp height with an uncertainties (at 1σ).
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Figure 5 Loss (a) and accuracy (b) function through the epochs for the training and the validation. (c) Confidence Inter-
val range prediction. Those plots show if labels (synthetic ground truths for the validation) fall in the predicted confidence
interval for each epochs.
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Figure 6 Labels (true values) from synthetics dataset versus predictions (ScarpLearn in a, MCSST in b and SPARTA in c) for
two set of synthetics datasets. The left plot corresponds to the simple setting and the right plot corresponds to the complex
setting. In both setting, we have the possibility of creating profiles with 1, 2 or 3 faults. In a) and b), uncertainty bars show 1σ.
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Figure 7 A) Map view of the Ameca fault system in Mexico. Insets show the localization of the studied site. In red, the fault
mapped in Núñez Meneses et al. (2021). Black profiles are topographic profiles used for the comparison. Red profiles are
plotted in plot B. Blue profiles are plotted in Fig. 11. B) Four examples of profiles analyzed. Here the vertical axis values are
shifted to provide a better visualization of the profiles.
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Figure 8 A) Scarp height results obtained for Ameca Fault, using Sparta (orange), ScarpLearn (black) ans MCSST (green).
Uncertainty bars represent 1σ. B) Zoom in the pink area from the plot A. C) Zoom in the blue area from the plot A. D) Ab-
solute difference between MCSST and ScarpLearn (in green) and between Sparta and ScarpLearn (in orange). E) T-student
test between MCSST and ScarpLearn. Values below 1 mean that the distributions are in agreement, values above 1 and be-
low 3 mean that distributions are in tension, values above 3 mean that distribution are in disagreement. F) Histogram of the
difference between MCSST and ScarpLearn. G) Cumulative histogram of the absolute difference MCSST and ScarpLearn.
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Figure 9 A) Map view of the Bilila-Mtakataka Fault. Insets show the localization of the studied site. In red fault mapped in
(Hodge et al., 2019a). Black are topographic profiles used for the comparison. Red profiles are the ones plotted in the plot B
(see below). Blue profiles are plotted in Fig. 11. B) Four examples of profiles analyzed. Here the vertical axis values are shifted
to provide a better visualization of the profiles.
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Figure 10 Bilila-Mtakataka Fault results. See legend in Fig. 8.
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Figure 11 Profiles whose scarp heights are not in agreement between MCSST and ScarpLearn. See profiles localization in
Figs. 7 and 9. Profiles 59 and 118 are those that pass through long-term scarps (> 50m), here several interpretations can
be made: red for the scarp, grey for the footwall surface and blue for the slope that can be either consider as a scarp that
undergone more erosion or either as a footwall. Here the vertical axis values are shifted to provide a better visualization of
the profiles.
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8 Tables389
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Table 1 Overview of published approaches that focus on onshore normal fault scarp.

References Approach Fault Detection Scarp height esti-
mation method

Uncertainties

Classic manual
estimation

Manual No Empirical Minimum and
Maximum

Wolfe et al.
(2020): MCSST

Semi-Manual No Least-square Monte Carlo

Hodge et al.
(2019a): SPARTA

Semi-Automatic No Least-square No

Sare et al. (2019) Automatic Yes Template match-
ing but it is not
the focus

No

Scott et al. (2022) Semi-Automatic Yes Least-square and
grid search

Percentile

This study:
ScarpLearn

Automatic No Convolution
Neural Network

Bayesian Infer-
ence

390

391
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Table 2 Parameters chosen from statistical distributions to create topographic profiles in SimScarp.

Parameters Distribution Minimum Maximum Mean StandardDe-
viation

Regional
slopes

Hanging
wall slope βh

Uniform -5° 10° / /

Footwall
slope βf

Uniform -5° 10° / /

Secondary
faults

Number of
secondary
fault

Uniform 2 2 / /

Dip sec-
ondary fault
δ

Uniform 25° 80° / /

Secondary
fault loca-
tion

Uniform Borders pro-
file

5% away of
the middle
of the profile
length

/ /

Main fault

Dip main
fault δ Uniform 25° 80° / /

Main fault
location Gaussian / / Middle of

the profile

5% of the
profile
length

Throw per
event Uniform 0.1 m 5 m / /

Total cumu-
lative throw Uniform 1 m 50 m / /

Diffusion Uniform 0.1 m 10 m / /
Slip rate Uniform 0.05 mm/y 20 mm/y / /
Minimum
number of
events

Uniform 1 1 / /

Perturbations

Gaussian
noise Gaussian / / 0 (0.1-1)

Parabolas A
number Uniform 0 1 / /

Parabolas A
width Uniform 0.1 150 / /

Parabolas A
height Uniform -10 10 / /

Trees num-
ber Uniform 0 10 / /

Trees width Uniform 0.1 10 / /
Trees height Uniform 1 15 / /
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Table 3 Main results to compare ScarpLearn, MCSST, SPARTA using synthetics datasets. RMSE is the Root Mean Squared
Error. NLL is the Negative Log Likelihood, lower NLL is, the better the model fits the data in case of comparing predictions
with uncertainties to a truth value. Relative uncertainties are expressed as mean± std using 1σ. PICP is the Prediction Interval
Coverage Probability, a 100% means that all truth values fall in the prediction interval. * SPARTA does not give results in all
cases.

Sets Metrics ScarpLearn ScarpLearn MCSST SPARTA* SPARTA*

Simple
Dataset

Number of
profiles 100 (on 50) 50 52 over 100 (29 over 50 )

Time to pro-
cess <1 min 3-4 hours < 1 hour

Mean scarp
height 23.3 m 24.6 m 24.0 m 32.3 m 32.5 m

Mean Ab-
solute error
(MAE)

3.9 m (4.8 m) 3.1 m 8.5 m (9.0 m)

RMSE 6.3 m (8.1 m) 6.9 m 14.7 m (15.2 m)
PICP at 1σ,
2σ, 3σ

48%, 73%,
86%

40%, 66%,
80%

92%, 96%,
96% -

Mean and
std of uncer-
tainties (at
1σ)

2.5± 1.1 m 2.4± 1.1 m 10.7± 9.4 m -

NLL 8.1 13.0 3.4 -
Relative un-
certainties 15± 14% 12± 8% 119± 178 % -

Complex
Dataset

Number of
profiles 100 (50) on 50 21 over 100 (12 over 50)

Time to pro-
cess <1 min 3-4 hours < 1 hour

Mean scarp
height 23.5 m 22.7 m 19.8 m 30.5 m 34.0 m

Mean Ab-
solute error
(MAE)

5.7 m (6.0 m) 5.9 m 10.6 m (13.6 m)

RMSE 7.6 m (8.1 m) 9.4 m 18.1 m (22.5 m)
PICP at 1σ,
2σ, 3σ

50%, 77%,
87%

46%, 72%,
86%

94%, 100%,
100% -

Mean and
std of uncer-
tainties (at
1σ)

5.0± 2.7 m 5.0± 2.5 m 22.8± 18.8m -

NLL 5.2 4.8 3.7 -
Relative un-
certainties 27± 22 % 25± 17 % 227± 383 % -
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Table 4 Main results to compare ScarpLearn, MCSST, SPARTA using real fault datasets that corresponds to sampled profiles
(see Figs. 7 and 9). See above Tab. 3 caption for metrics’s definitions.

Sets Metrics ScarpLearn ScarpLearn MCSST SPARTA*

Ameca Fault
Dataset

Number of profiles 117 (all) 98 (where MCSST is) 98 17
Time to process <1 min <1 min 6-8 hours < 1 hour
Mean 8.6 m 8.7 m 8.7 m 6.8 m
Median 7.5 m 7.6 m 5.9 m 7.1 m
Mean of uncertainties (at 1σ) 3.0 m 2.9 m 3.6 m -
Absolute difference with respect
to ScarpLearn (mean and std) - - 2.9± 1.8 m 2.3± 18 m

Bilila-
Mtakataka
Fault Dataset

Number of profiles 161 (all) 161 (where MCSST is) 161 89
Time to process <1 min <1 min 6-8 hours < 1 hour
Mean - 21.8 m 22.4 m 22.6 m
Median m 21.6 m 21.0 m 24.7 m
Mean of uncertainties (at 1σ) m 3.0 m 6.5 m -
Absolute difference with respect
to ScarpLearn (mean and std) - - 6.2 ± 5.6 m 5.7± 5.7 m

393
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9 Appendix394

A SimScarp workflow395

At the beginning, SimScarp chooses a random slip rate between realistic uniform distribution (U(0, Xyrs)), and a396

realistic cumulative throw (U(0, Xyrs)). Then the code estimates the number of events. SimScarp estimates the397

throw (ui) for each event (i), according on the slip rate, the cumulative throw and theminimum andmaximum throw398

per event defined. According to the slip rate, the number of event, the cumulative throw, SimScarp assigns periods399

betweeneachevents. To create theprofile, SimScarp requires two slopes, one for thehangingwall (βh) andone for the400

footwall (βf ), sampled from an uniform distribution (U(βmin, βmax)). The simulator SimScarp breaks a secondaries401

fault branch,with adip (δ) randomly set (uniformdistribution,U(δmin, δmin)). Then, betweeneach rupture adiffusive402

erosion is applied during the period between events. The simulator SimScarp breaks the main fault branch, with a403

dip (δsf ) randomly set (uniform distribution, U(δsfmin, δsfmin)). The rupture location (X) is then randomly set to404

± 5 % from the profile center (Gaussian distribution; N (mean profile, 5%of the profile length)). At each rupture405

a fault scarp is created at the bottom of the scarp, rejuvenating the scarp, with a throw per event. Then, between406

each rupture a diffusive erosion is applied during the period between events. The total scarp height (Sh) is calculated407

by adding every scarp height (Shi) created at each event (i). Here we measure the scarp height at the middle of the408

scarp, following this equation:409

Shi = ui ∗ (1−
tanβf + tanβh

2 ∗ tan δi
) (2)410

Once the ruptures are produced, SimScarp adds non-tectonic perturbations at random locations along the profile411

in order to create a realistic morphology using random parabolas or steps functions such as in Hodge et al. (2019a).412

Those parabola attempt to represent narrow drainage, wide rivers, hills, steps functions attempts to represent trees.413

The number of parabolas or steps functions, theirs locations, heights and widths are chosen randomly in a uniform414

distribution (Table 2). Finally SimScarp adds a Gaussian noise accounting for an arbitrary perturbation affecting all415

the topographic profile.416

B Appendix figures417
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Figure 12 Different methods of measuring scarp height (or surface vertical offset is the fault trace is not verified). A) Some
studies focus the measurement on the middle of the scarp. B) Some other focus the on the location where the scarp has a
maximum slope. C) Some others projects the hanging wall (or the footwall) on the inflexion between the footwall (or hanging
wall, respectively) and the scarp to bracket the scarp height.
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Figure 13 Distribution of SimScarp parameters obtained when generating synthetic datasets to train ScarpLearn.
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Figure 14 Synthetic setting with only one fault. Labels (true values) versus predictions (ScarpLearn in a, MCSST in b and
SPARTA in c) for two set of synthetics datasets. The left plot corresponds to the simple setting and the right plot corresponds
to the complex setting. In a) and b), uncertainty bars show 1σ.
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Figure 15 Synthetic setting with only two faults. Labels (true values) versus predictions ScarpLearn predictions for two set
of synthetics datasets. See legend in Fig. 14 for more details.
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Figure 16 Synthetic setting with only three faults. Labels (true values) versus predictions ScarpLearn predictions for two
set of synthetics datasets. See legend in Fig. 14 for more details.
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Figure 17 Ameca Fault. A: Absolute difference between MCSST and ScarpLearn (in green) and between Sparta ans
ScarpLearn (in orange) according to the scarp height. B: T-student tests difference between MCSST and ScarpLearn distri-
butions according to the scarp height. C: Standard deviation of ScarpLearn (in black) and of MCSST (in green) according to
the scarp height. D: Distribution of ScarpLearn standard deviation (in black) and of MCSST standard deviation (in green). E:
Distribution of the absolute difference in m between MCSST and ScarpLearn (in green).
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Figure 18 Ameca Fault results. A,B,C: Scarp Height estimations with MCSST versus estimations with ScarpLearn (A: with un-
certainties at 1σ, B: without uncertainties, C zoom below 25m). D-E: Scarp Height estimations with Sparta versus estimations
with ScarpLearn (plot D) or with MCSST (plot E).
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Figure 19 Bilila-Mtakataka Fault results. See legend in Fig. 17.
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Figure 20 Bilila-Mtakataka Fault results. See legend in Fig. 18.

C Appendix Tables418
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Table 5 Parameters chosen from statistical distributions to create topographic profiles in SimScarp for simple dataset.

Parameters Distribution Minimum Maximum Mean Standard De-
viation

Regional
slopes

Hanging wall slope
βh

Uniform -5° 10° / /

Footwall slope βf Uniform -5° 10° / /

Secondary
faults

Number of sec-
ondary fault Uniform 1 3 / /

Dip secondary fault
δ

Uniform 25° 80° / /

Secondary fault lo-
cation Uniform Borders pro-

file

5% away of
the middle
of the pro-
file length

/ /

Main fault

Dip main fault δ Uniform 25° 80° / /

Main fault location Gaussian / / Middle of
the profile

5% of the
profile length

Throw per event Uniform 0.1 m 5 m / /
Total cumulative
throw Uniform 1 m 50 m / /

Diffusion Uniform 0.1 m 10 m / /
Slip rate Uniform 0.05 mm/y 20 mm/y /
Maximum number
of events Uniform 1 - / /

Perturbations

Gaussian noise Gaussian / / 0 (0.1-1)
Parabolas A number Uniform 0 1 / /
Parabolas A width Uniform 0.1 150 / /
Parabolas A height Uniform -10 10 / /
Trees number Uniform 0 10 / /
Trees width Uniform 0.1 10 / /
Trees height Uniform 1 15 / /

419

420

421
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Table 6 Parameters chosen from statistical distributions to create topographic profiles in SimScarp for complex dataset.

Parameters Distribution Minimum Maximum Mean Standard De-
viation

Regional
slopes

Hanging wall slope
βh

Uniform -10° 25° / /

Footwall slope βf Uniform -10° 25° / /

Secondary
faults

Number of sec-
ondary fault Uniform 1 3 / /

Dip secondary fault
δ

Uniform 25° 80° / /

Secondary fault lo-
cation Uniform Borders pro-

file

5% away of
the middle
of the pro-
file length

/ /

Main fault

Dip main fault δ Uniform 25° 80° / /

Main fault location Gaussian / / Middle of
the profile

5% of the
profile length

Throw per event Uniform 0.1 m 5 m / /
Total cumulative
throw Uniform 1 m 50 m / /

Diffusion Uniform 0.1 m 10 m / /
Slip rate Uniform 0.05 mm/y 20 mm/y /
Maximum number
of events Uniform 1 - / /

Perturbations

Gaussian noise Gaussian / / 0 (0.1-1)
Parabolas A number Uniform 0 3 / /
Parabolas A width Uniform 0.1 150 / /
Parabolas A height Uniform -10 10 / /
Trees number Uniform 0 50 / /
Trees width Uniform 0.1 10 / /
Trees height Uniform 1 15 / /

Table 7 Main metrics to compare ScarpLearn using synthetics datasets. RMS is the Root Mean Square, MSE is the Mean
Square Error, NLL is the Negative Log Likelihood. Lower NLL is, the better the model fits the data in case of comparing predic-
tions with uncertainties to a truth value. Relative uncertainties are expressed as mean ± std using 1σ. PICP is the Prediction
Interval Coverage Probability, a PICP of 100% means that all truth values fall in the prediction interval. The parameters for
SimScarp to create the simple and the complex datasets are in Tabs. 5 and 6.

Sets Metrics ScarpLearn ScarpLearn ScarpLearn
1 fault dataset 2 faults dataset 3 faults dataset

Simple Dataset

Number of profiles 100 100 100
Time to process <1 min <1 min <1 min
Mean scarp height 19.3 m 23.0 m 23.7 m
Mean Absolute error 2.3 m 3.6 m 4.4 m

RMSE 3.6 m 5.4 m 6.4 m
PICP at 1σ, 2σ, 3σ 69%, 89%, 95% 44%, 71%, 81% 40%, 57%, 71%

Mean and std of uncertainties (at 1σ) 2.5± 0.8 2.3± 1.1 2.3± 1.1
NLL 3.1 6.2 7.0

Relative uncertainties 18± 14 14± 15 % 14± 23

Complex Dataset

Number of profiles 100 100 100
Time to process <1 min <1 min <1 min
Mean scarp height 23.1 m 28.0 m 25.1 m
Mean Absolute error 6.2 m 5.7 m 7.6 m

RMSE 8.6 m 7.8 m 10.2 m
PICP at 1σ, 2σ, 3σ 61%, 89%, 93% 37%, 63%, 74% 43%, 70%, 83%

Mean and std of uncertainties (at 1σ) 6.1± 2.6 3.3± 1.6 m 5.1± 2.2
NLL 3.8 6.2 6.4

Relative uncertainties 33± 24 14± 16 28± 23
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Table 8 Main metrics to compare ScarpLearn, MCSST and SPARTA using synthetics datasets only having 1 fault. See legend
of the Table 7 for metrics definitions.

Sets Metrics ScarpLearn MCSST SPARTA* ScarpLearn_1F
train for 1 fault

1 fault Dataset 1 fault Dataset 1 fault Dataset 1 fault Dataset

Simple
Dataset

Number of pro-
files

only on 25 25 13 (over 25) only on 25

Time to process <1 min 1-2 hours <1 hour <1 min
Mean scarp
height

18.3 m 20.5 m 22.7 m 19.7 m

Mean Absolute
error

3.3 m 1.0 m 6.4 m 1.3 m

RMS 4.8 m 1.4 m 8.6m 1.8 m
PICP at 1σ, 2σ,
3σ

52%, 76%, 88% 96%, 100%,
100%

- 92%, 96%, 96%

Mean and std
of uncertainties
(at 1σ)

2.5± 0.9 m 4.2 ± 5.0 m - 3.2± 1.1 m

NLL 5.4 2.0 - 2.5
Relative uncer-
tainties

19± 13 % 324 ± 142 % - 28± 26 %

Complex
Dataset

Number of pro-
files

only 25 25 (10 on 25) 25

Time to process <1 min 1-2 hours <1 hour <1 min
Mean scarp
height

21.7 m 18.3 m 18.2 m 19.3 m

Mean Absolute
error

7.9 m 7.2 m 15.4 m 6.1 m

RMS 11.2 m 10.0 m 21.1 m 7.5 m
PICP at 1σ, 2σ,
3σ

60%, 72%, 88% 76%, 92%, 100% - 80%, 80%, 96%

Mean and std
of uncertainties
(at 1σ)

5.7± 2.0 m 15.5 ± 14 m - 7.1± 2.1 m

NLL 5.0 3.7 - 3.5
Relative uncer-
tainties

36± 38 % 930 ± 3517 % - 58± 176 %

422
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