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ABSTRACT
Estimating the ground displacement from non-rigid registra-
tion of two optical satellite images, separated from hours to
months, is key in the study of natural disasters such as earth-
quakes. Compared to standard image registration and flow
estimation tasks, a key challenge here lies in resolving very
small displacements (typically cm- or m-scale) with sub-pixel
accuracy and precision using coarser image resolutions (e.g.
15m for Landsat-8). Traditional block matching/sliding win-
dow methods, employing local windowed correlation tech-
niques, are unable to reduce the effects of long-wavelength
noise arising from differences in image lightning, vegetation,
or acquisition artifacts. By using both local and global scales,
fully convolutional deep learning registration models (U-nets)
are potentially able to better resolve ground displacements,
less affected my multi-scale noise. Yet, no labelled database
exists for ground deformation. Here, we develop a new syn-
thetic database of 100,000 realistic satellite image pairs con-
taining simulated earthquake displacements, along with their
ground truth displacement maps, which are used to train state-
of-the-art fully convolutional deep learning models (U-net).

Index Terms— optical image correlation, image registra-
tion, satellite imagery, deep learning, geodesy

1. INTRODUCTION

Precise estimation of ground displacement from the registra-
tion of optical satellite images is fundamental for the study
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of natural disasters. In the case of earthquakes, characteriz-
ing near-field displacements around surface ruptures provides
valuable constraints on the physics of earthquake slip. Re-
cently, image correlation has been used to investigate the de-
gree of slip localization, and how it may vary as a function
of geological parameters (such as fault structural maturity),
raising the possibility that slip localization (vs distribution)
may be predictable, with important implications for seismic
hazard assessment.

Optical satellite geodesy, particularly through Optical Im-
age Correlation (OIC), has transformed the characterization
of ground deformation linked to natural hazards like earth-
quakes [1, 2]. OIC is able to resolve full deformation fields
between multiple optical satellite images captured over the
same area at different times (hours to years apart). Unlike
more precise techniques like InSAR, OIC excels in resolving
large, high-strain displacements with fine spatial detail and
using extended temporal baselines (up to several decades). It
has found extensive application in constraining ground dis-
placements produced by earthquakes, volcanoes, landslides,
and glaciers [3]. In earthquake studies, the displacements can
often be relatively small compared to the image pixel size, and
may also vary spatially in a complex manner: sub-pixel preci-
sion and high spatial detail are therefore crucial for accurately
capturing the complex variations in displacement values asso-
ciated with earthquake surface ruptures.

OIC methods for quantifying image displacement have
traditionally employed a sliding window approach, in which
the displacement is resolved at high frequencies using cross
correlation. This may be achieved either in the spatial domain
[4, 5, 6, 7] or frequency domains [8, 9, 5, 10]. Spatial cross-
correlation compares reference and target images through a
sliding window approach [5]. Frequency-based correlation



simply takes advantage of the FFT to more efficiently com-
pute the correlation matrix, from which the displacement is
estimated, thus giving similar results to spatial-based corre-
lators, albeit with faster run-times [9]. When optimized for
sub-pixel performance, traditional correlators can resolve dis-
placements with precision of less than 1/10th of a pixel for
typical Earth Observation satellite images. However, in cases
where image noise is very low between multiple images, the
precision may be even higher.

Image registration and displacement field estimation from
optical images has been successfully addressed by recent
data-driven approaches, and in particular CNNs, e.g. in med-
ical imaging [11], and remote sensing [12]. Displacement
field estimation between two images can be efficiently solved
by deep learning, e.g. treating optical flow estimation as a
learning task [13]. The large majority of deep learning image
registration and flow estimation approaches are derived from
fully-convolutional U-net architectures [14]. However, they
focus on the estimation of large displacements (> 1 pixel)
from temporally dense datasets (e.g. typical of video feeds),
while the estimation of sub-pixel shifts from temporally lim-
ited and distant acquisitions (e.g. typical of remotely sensed
images) has been little studied. Several recent studies have
demonstrated the potential of neural network architectures to
also retrieve sub-pixel displacements [15, 16, 17]; although,
no applications in remote sensing were proposed.

In [18], we developed an innovative deep learning method
to estimate ground displacement maps with sub-pixel preci-
sion from optical satellite images. Our proposed approach re-
lied on the same principle as state-of-the-art OIC approaches,
by working at the local scale with small windows (typically
16x16 or 32x32 pixels), while making the assumption of a lo-
cally rigid and non-rotating transformation; the translational
displacement between the two windows is evaluated using a
CNN. To minimize the displacement bias in the vicinity of
sharp discontinuities, we further developed a second training
dataset which included non-rigid displacements (i.e. simulat-
ing sharp discontinuities). Training a CNN with this second
archive, allowed us to significantly reduce the bias in the near-
field of earthquake surface ruptures, which is critical both
for the accurate documentation of near-field displacement in
earthquakes, as well as correctly investigating the underlying
physics of fault slip.

While this method has improved the accuracy with respect
to traditional OIC methods in discontinuity areas, thanks to
our specific discontinuity simulated training dataset, it does
not solve all their limitations; as such, we are still sensitive to
image noise arising from differences in lightning, vegetation,
anthropic changes, acquisition artifacts, etc.

In this new work, we propose a U-net-based method to
solve the sub-pixel displacement estimation problem at a
global scale. Such architecture incorporates contracting and
expansive paths, and is able to retrieve full scale surface dis-
placement maps, making use of both global ad local features,

which allow to further reduce the displacement noise result-
ing from differences in the input images. To do so, we trained
our model with a newly generated synthetic database: real
satellite acquisitions, warped with 100,000 different ultra-
realistic synthetic displacement maps, representing realistic
faults.

2. METHODS

2.1. SYNTHETIC DATASET GENERATION

In the Earth Science community, no suitable archive of syn-
thetic earthquake displacements currently exists for the pur-
pose of training such a Convolutional Neural Network. More-
over, the absence of accurate and spatially comprehensive
ground displacement measurements in real earthquake sce-
narios poses a challenge for establishing a pertinent database
of applicable ground truth information. As a result, we create
synthetic satellite images with known displacements to train
our network.

We generate realistic synthetic earthquake image pairs
by re-sampling Landsat-8 satellite acquisitions, incorporating
realistic synthetic displacement fields on one of the two ac-
quisition dates. The key is to make the displacement fields as
realistic as possible. To do so, we create a pipeline to gener-
ate realistic fault discontinuities with rough geometries and
slip distributions in a homogeneous elastic half-space. Sur-
face displacement maps are then computed using analytical
expressions linking slip on triangular fault patches to surface
displacement, based on prescribed fault geometry and earth-
quake slip distribution. The faults follow natural earthquake
fault scaling, rupture only the seismogenic crust, and exhibit
geometric roughness and fractal slip distributions. The mod-
els focus on strike-slip faults, discretized with an unstructured
meshing approach (Mesh2D, [19]) using triangular displace-
ment elements (TDEs). The high resolution near the model
surface enables us to generate realistic displacements at the
resolution of the satellite imagery. Observation points are
generated using an unstructured mesh, densifying points near
the surface rupture. We then extract 1024 × 1024 patches
from Landsat-8 satellite images acquired on two different
dates (called pre and post, separated by weeks to months)
in a stable region. An initial global co-registration step en-
sures accurate image alignment over the entire region. The
displacement field warps the second image using a quintic-
order spline re-sampling algorithm [20] with high precision
(∼ 1/100th to 1/1000th pixel) compared to state-of-the-art
sub-pixel registration methods (<1/10th pixel).

We build two training dataset (one with pre and pre-
warped, and the other with pre and post-warped), each made
of 100,000 samples for training of size 1024x1024 pixels
(80% for training; 20% for validation).
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Fig. 1. E-W and N-S displacement maps for the trained StrainNet on one of the 20k validation samples. On the left, the pre
and pre-warped images, and on the right the target ground truth and the estimated displacement maps. Results are expressed in
pixels (mean error: 0.063 px).

2.2. SUB-PIXEL REGISTRATION U-NET MODELS

The input of the U-net registration model is composed of two
512x512 black&white satellite images (a ’pre-earthquake’
and a ’post-earthquake’), and outputs displacement maps of
size 512x512 (two channels, the East-West displacement and
the North-South displacement), where both inputs and targets
are cropped from the initial 1024x1024 samples.

In this study, three neural network architectures, FlownetS,
FlownetSD (both are bricks of the Flownet-2.0 [15], and
FlownetSD being optimized for small displacements) and
StrainNet [16], were trained with our custom dataset, each
designed with specific parameters and hyperparameters.
FlownetSD and StrainNet are able to retrieve full scale dis-
placement fields, while FlownetS only retrieves a 4x smaller
output. The three models have around 38 million parameters.
The key hyperparameters include 10 convolutional layers in
the contracting part and 4 in the upscaling part, with an in-
creasing and decreasing number of kernels per layer in the
respective sections. The kernel sizes differ, with successively
the first layer of 7x7, the second of 5x5, and the remaining
layers of 3x3 for FlownetS and StrainNet, and only 3x3 for
FlownetSD. A window size of 512x512, a batch size of 8, and
a multiscale loss function coming from [16] were employed
during training, during 100 epochs. In terms of computation
time per epoch, FlownetS required 4.6 minutes, FlownetSD
took 41 minutes, and StrainNet took 52 minutes, all three
using four GPUs V100.

3. PRELIMINARY RESULTS AND CONCLUSION

We show on Figure 1 the outputs for the trained StrainNet ar-
chitecture, using an image pair from the pre/pre-warped val-
idation dataset. The main features of the ground truth dis-
placement maps are well-retrieved by the model.

In total, the mean accuracies (absolute value of ground
truth minus estimation) on the whole validation dataset
are respectively 0.078, 0.068, and 0.069 pixels, for trained
FlownetS, FlownetSD and StrainNet.

To conclude, the models exhibits promising preliminary
results, showcasing their capabilities to retrieve full-scale
surface displacement maps with high accuracy. While more
complete validations and direct comparisons with other state-
of-the-art approaches are ongoing, our first findings suggest
that the proposed database and U-net-based approaches have
the potential to significantly reduce the different noises that
are currently present in the displacement maps estimated
using traditional state-of-the-art sliding window correlators.
For the moment, only pre/pre-warped dataset has been used
to train the model. With pre/post-warped samples for train-
ing, we have good expectations that our U-nets will manage
the displacement noise resulting from differences in the input
images. Also, our two datasets are a valuable addition for
the Earth Science community, providing realistic synthetic
ground truth for various applications.
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